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Abstract

A fuzzy bag is a bag in which each occurrence of an element is associated with a grade of membership. This
notion can be viewed as a generalization of the concepts of set, fuzzy set and bag. The set of fuzzy integers (Nf )
provides a general characterization in which all these different concepts are treated in a uniform way and can then
be composed. In the field of databases, the use of fuzzy bags is motivated by their ability to manage both quantities
and preferences. However,Nf becomes too restricted a framework when dealing with queries based on difference
or division operations. So, a more general structure based on the set of fuzzy relative integers (Zf ) in which exact
differences can be performed, has been first developed. In this paper, we carry on with this approach and we extend
Zf to the set of fuzzy rational numbers (Qf ). This context leads to define a closed system of multiplicative operations
and allows to perform exact divisions. Applied to flexible querying of databases,Qf and the notion of division on
fuzzy numbers allow to generalize the relational division. They define a sound basis for queries involving ratios
between quantities.
© 2005 Published by Elsevier B.V.
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1. Introduction

An issue in extending database management functionalities is to increase the expressiveness of query
languages. Flexible querying[3] enables users to express preferences inside requirements. Fuzzy set theory
offers a general framework for dealing with flexible queries and priorities inside compound queries. The
answers to such queries are then qualified and rank-ordered. Besides, the bag type [1,2], which offers
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the capability of managing quantities (numbers of occurrences of data items), plays an important role
in databases[15,18] and data models (relational or object oriented) have been designed to support it.
Systems taking into account both flexible queries and bags motivate the use of fuzzy bags. For example, a
fuzzy bag can be obtained when some attributes are removed from a fuzzy set of tuples. This is illustrated
by the query:find the salaries of young employeeswhich requires a projection (salary) of a fuzzy set
of persons (the young employees) and delivers a fuzzy bag. As several employees may have the same
salary, the collection of salaries returned may contain duplicates. Moreover, a given salary occurrence
is associated with a more or less young employee and thus satisfies more or less the criterion “to be
the salary of a young employee”. Consequently, the different salaries returned by the query have to be
managed both quantitatively and qualitatively thanks to a fuzzy bag which represents the distribution of
the salaries of young employees.

Our research aim is to devise new structures capable of dealing with quantification and preferences on
data. These models can then be used for extending elementary query operators that provide a sound basis
for designing high level query languages such as OQL or SQL. So, we are mainly concerned with the
study of flexible querying of databases and we follow a pragmatic, application domain-driven approach.
But, it is worth mentioning that our investigations have a larger scope than the field of databases and
many other potential application domains could also benefit from fuzzy bags, such as fuzzy data mining,
summarization of data or fuzzy information retrieval.

Fuzzy bags and some of their operators have been defined by Yager in [30,31] and complementary
studies have been carried out in [7,8,9,17,20,21]. In [23,27], we have proposed a new approach for building
fuzzy bags so as to introduce operators compatible with both bags and fuzzy sets. Hence, we have shown
that fuzzy bags can be viewed as a generalization of fuzzy sets thanks to the consideration of an order
structure over the unit interval. Their characteristic function is then defined from a universeU to the set
of conjunctive fuzzy natural integers (Nf ). However, in this context, the difference operation between two
bags A and B cannot always be computed. This problem comes from the fact that the fuzzy bag model
considered so far is based on positive fuzzy integers. It is the reason why the set of fuzzy relative integers
(Zf ) was constructed. In such a framework, as discussed in [25], the differenceA−B of two fuzzy bags
is always defined.

This paper, situated in the continuation of these works, aims at extendingZf to Qf , the set of fuzzy
rational numbers. This context leads to define a closed system of multiplicative operations and to perform
exact divisions. The role of these arithmetic structures is illustrated in the field of flexible querying of
databases whereQf and the notion of division on fuzzy numbers allow to generalize the relational division
or to define a sound basis for queries calling on ratios between quantities.

The rest of this paper is organized as follows. Sections 2 and 3 recall some key notions which constitute
the background of the new contributions developed in Sections 4 and 5. Thus, Section 2 introduces the
concepts of fuzzy bags and fuzzy natural integers. The main definitions and operators are recalled in
Subsections 2.1 and 2.2. In Section 3, the extension ofNf to Zf and the concept of a fuzzy bag defined
on Zf are briefly discussed. Next, Section 4 is devoted to a complementary study extendingZf to Qf .
Main definitions, operators and algebraic properties are first analyzed, then the exact division onQf and
its different approximations onNf or R are more specifically considered. Last, the usefulness of these
propositions is emphasized in the database domain. Thus, in Section 5, we first study some generalizations
of relational applications thanks to approximate divisions, then we illustrate the interest ofQf when dealing
with a query such aswhat is the average salary of a fuzzy set of young employees? Or when evaluating
grades of inclusion and similarity measures based on divisions of fuzzy cardinalities.
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2. Fuzzy bags and fuzzy natural integers

In this section, we show how to specify fuzzy bags thanks to the concept of fuzzy natural integer so as
to introduce a structure compatible with both bags and fuzzy sets.

2.1. Fuzzy bags characterizations

A fuzzy bag is a bag in which each occurrence of an element is associated with a grade of membership
[30]. One way to describe a fuzzy bag is to enumerate its elements, for example:A = 〈1/a,0.1/a,0.1/a,
0.5/b〉.

Thus, a fuzzy bag is a collection of elements with multiple occurrences and having degrees of mem-
bership. Bags and fuzzy sets can be viewed as particular cases of fuzzy bags. In the following, taking into
account this duality, we show that as the concept of�-cuts can be viewed as a bridge connecting bags
and fuzzy bags, symmetrically, the concept of�-cuts (which is similar to�-cuts but related to numbers
of occurrences) established a link between fuzzy sets and fuzzy bags [23].

Bag operators can be extended to fuzzy bags thanks to the�-cut concept, similarly to the extension of
a set into a fuzzy set. We define the�-cut of a fuzzy bagA as the crisp bagA� which contains all the
occurrences of the elements of a universeU whose grade of membership inA is greater than (or equal)
to the degree� (� ∈]0,1]). The number of occurrences of the elementx in A� is denoted by:�A�(x). In
order to preserve the compatibility between bag and fuzzy bag structures, we define the intersection and
the union of fuzzy bags satisfying the following properties:

(A ∩ B)� = A� ∩ B�; (A ∪ B)� = A� ∪ B�, (1)

where the union and intersection on bagsA�, B� are characterized by�A�∩B�(x) = min(�A�(x), �B�(x)),
�A�∪B�(x) = max(�A�(x), �B�(x)).

Symmetrically, we bind fuzzy bag and fuzzy set structures by introducing the concept of�-cut. The
�-cut of a fuzzy bagA is the fuzzy setA� such that the grade of membership of the elementx in A�,
denoted by�A�(x), defines the extent to whichA containsat least� (with � ∈ N+) occurrences ofx:

�A�(x) = sup{�|�A�(x)��}. (2)

Such a function allows to extend operations on fuzzy sets to their counterparts on fuzzy bags thanks to
the following properties:

(A ∩ B)� = A� ∩ B�; (A ∪ B)� = A� ∪ B�, (3)

where the union and intersection on fuzzy setsA�, B� are characterized by�A�∩B�(x) = min(�A�(x),

�B�(x)), �A�∪B�(x) = max(�A�(x), �B�(x)).
These two characterizations lead us to put forward a new approach which merges both degrees and

numbers of occurrences into the unique concept of fuzzy natural integer.
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Fig. 1. A graphical representation of FGCount(A) = {1/0,1/1,0.4/2,0.4/3}.

2.2. Fuzzy natural integers

The fuzzy cardinality|A| of a fuzzy setA, as proposed by Zadeh[31], is called FGCount(A) and
defined by

∀n ∈ N, �|A|(n) = sup{�||A�|�n}. (4)

Let us consider the fuzzy setA = {1/x1,0.4/x2,0.4/x3}, then the fuzzy cardinality ofA is |A| =
{1/0,1/1,0.4/2,0.4/3}. The degree� associated with a number� in the fuzzy cardinality|A| is inter-
preted as the extent to whichA hasat least� elements. It is a normalized convex fuzzy set of integers
and the associated characteristic function is nonincreasing.

The amount of data inA is completely and exactly described by the fuzzy set{1/0,1/1,0.4/2,0.4/3}
(a graphical representation of|A| is given by Fig. 1). But, other denotations may be used for represent-
ing |A|. For example, a possibilistic view of|A| is given by the fuzzy set of the cardinalities of all its
�-cuts:{1/1,0.4/3}2. Such a “compact” representation of the cardinality ofA is only specified by the
characteristic points(1,1) and(3,0.4). Fig. 1 can also be described using a probabilistic notation given
by {0.6/1,0.4/3}3. So, we can view{1/0,1/1,0.4/2,0.4/3}, {1/1,0.4/3}2, {0.6/1,0.4/3}3 as three
different descriptions of thesameinformation. Whatever the used representation, operations on fuzzy
cardinalities have to produce equivalent results. The advantage of the first one is its convexity. Conse-
quently, it satisfies the additivity property of classical cardinalities (based on the extension principle)[11].

It is very important to notice that this kind of “fuzzy number” is not interpreted as a possibility
distribution, as “usual fuzzy numbers” [11] are, but it is viewed as aconjunctivefuzzy set of integers.
In fact, the knowledge of all the cardinalities of all the different�-cuts of a fuzzy setA provides an
exact characterization of the number of elements belonging toA. Of course, the considered fuzzy set
A represents a perfectly known collection of data (without uncertainty), consequently its cardinality
is also perfectly known. We think that it is more convenient to qualify such a cardinality number as
being “gradual” rather than being “fuzzy”. As shown in the following, this specificity has important
consequences regarding the validity of group properties (in a mathematical meaning) which hold in this
particular context.

Using definition (4) the cardinality of a crisp setE is an increasing set of integers{0,1, . . . , n}. Such
a set represents a cardinality and is also mathematically equivalent to the integern. This approach is
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conformed to the classical mathematical definition callingn the cardinality of a crisp finite setE when
there exists a bijection betweenE and an increasing set of integers{1, . . . , n}.

The cardinality of an�-cut of a fuzzy setE is the corresponding�-cut of its fuzzy cardinality
{0,1, . . . , n} assimilated to the integern. Thus, a fuzzy cardinality, such as{1/0,1/1,0.4/2,0.4/3},
can be viewed as a fuzzy integer, and from now on, the set of all fuzzy cardinalities (defined as FG-
Counts) will be calledNf (the set offuzzynatural integers). It is important to notice that each�-cut of
a fuzzy integer, as considered here, is viewed as an integer. On the contrary, an�-cut of a “usual fuzzy
number”, interpreted as an ill-known number, represents various possible values (i.e. adisjonctiveset of
numbers) of an actual number and is defined by an interval.

Other fuzzy cardinalities based on the definition of FGCounts, such as FLCounts or FECounts, have
been defined by Zadeh or Wygralak[10,29,32]. Dubois, Prade [5] introduced a similar definition but they
adopt a possibilistic point of view and a fuzzy cardinality is interpreted as a possibility distribution over
�-cuts. The rest of this paper is based on the well known FGCounts because they completely satisfy the
needs of our application domain.

In order to extend a binary operation # (e.g.+,×,min,max, . . .) 1 onNf , we start from the operations
on crisp bags based on arithmetic operations on integers. Then, due to the semantics associated with the
degree of any integer� in a fuzzy cardinality (the extent to which a fuzzy set hasat least� elements),
these operations are extended to fuzzy integers by means of the generalized extension principle [29]
defined by

�a#b(z) = sup
(x,y)|x#y�z

min(�a(x), �b(y)), (5)

wherea andb are two fuzzy natural integers.
Using�-cuts, a binary operation # onNf can be defined thanks to the corresponding operation onN:

(a#b)� = a�#b�. (6)

Example 2.1.We consider two fuzzy integersa = {1/0,1/1,1/2,0.1/3} andb = {1/0,1/1,0.5/2}.
Using�-cuts, the minimum, addition and product operations can be easily performed. Hence, we obtain

min(a, b) = {1/0,1/1,0.5/2},
a + b = {1/0,1/1,1/2,1/3,0.5/4,0.1/5},
a × b = {1/0,1/1,1/2,0.5/3,0.5/4,0.1/5,0.1/6}.

Due to the specific characterization of fuzzy integers (their characteristic function is monotonically
decreasing on[0,+∞[), it can easily be shown (using�-cuts) thatNf is a semiring structure which means
that operations of addition and product satisfied the following properties: (Nf ,+) is a commutative monoid
(+ is closed and associative) with the neutral element{1/0}; (Nf ,×) is a monoid with the neutral element
{1/0,1/1}; the product is distributive over the addition.

1 In the rest of this paper we adopt an overloading principle and a binary operation onNf , Zf or Qf is represented by the same
symbol, such as+ for the addition.
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2.3. Fuzzy bags operations based onNf

The concepts of degree and number of occurrences, which both characterize an elementx in a fuzzy bag,
can be simultaneously dealt through the concept of fuzzy integer. Considering this notion, the occurrences
of an elementx in a fuzzy bagA can be characterized as a fuzzy integer denoted by�A(x). This fuzzy
number is the fuzzy cardinality of the fuzzy set of the different occurrences ofx in A. Thus, a fuzzy bag
A, on a universeU , can be defined by a characteristic function�A fromU to Nf :

�A : U → Nf .

Example 2.2. The characteristic of the element ‘a’ in the fuzzy bagA = {〈1,0.1,0.1〉/a, 〈0.5〉/b}
is �A(a) = {1/0,1/1,0.1/2,0.1/3}. Using fuzzy integers,A can alternatively be represented asA =
{{1/0,1/1,0.1/2,0.1/3}∗a, {1/0,0.5/1}∗b}.

So, the�-cut of a fuzzy bagA can be defined as the crisp bagA� such that the number of occurrences
of the elementx in A� is an integer associated with the�-cut of the fuzzy number of occurrences ofx in
A : �A�(x) = (�A(x))�.

From the basic operations on fuzzy integers, operations on crisp bags can be straightforwardly extended
to fuzzy bags[23,27]. Thus, the cardinality of a fuzzy bagA drawn fromU , denoted by|A|, is defined by

|A| =
∑
x∈U

�A(x) (7)

and the extension of the operations over bags leads to

�A∩B(x) = min(�A(x),�B(x)), (8)

�A∪B(x) = max(�A(x),�B(x)), (9)

�A+B(x) = �A(x)+ �B(x), (10)

�A×B(x) = �A(x)× �B(x), (11)

where binary operations (min,max,+,×) on fuzzy integers are defined by (5),A + B is the additive
union andA×B is the cartesian product over two fuzzy bagsA andB. Note that, due the particular shape
of fuzzy integers, min or max can be performed “vertically” (by combining degrees) or horizontally (by
combining integers).

In the special case whereA andB are reduced to bags (resp. fuzzy sets), the fuzzy numbers�A(x)
and�B(x) can be written as{0/1,1/1,1/2, . . . ,1/n} (resp.{1/0, �/1}), formulas (7)–(11) yield to the
usual specification of the corresponding operations over bags onN (resp. fuzzy sets on[0,1]). Hence,Nf
provides a general framework in which sets, bags, fuzzy sets and fuzzy bags can be represented through
a common representation. Consequently, these structures can be composed thanks to a small number of
generic operators.

Example 2.3. LetAandB be the two fuzzy bags represented as follows:A={{1/0,1/1,0.1/2,0.1/3}∗a,
{1/0,0.5/1}∗b};B = {{1/0,0.9/1,0.5/2}∗a}.
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The number of occurrences of the elementsa andb in A ∩ B are characterized by

�A∩B(a) = min({1/0,1/1,0.1/2,0.1/3}, {1/0,0.9/1,0.5/2}) = {1/0,0.9/1,0.1/2},
�A∩B(b) = min({1/0,0.5/1}, {1/0}) = {1/0} = 0.

So, we deduce:A ∩ B = {{1/0,0.9/1,0.1/2}∗a} which is the same result as the one obtained using
�-cuts.

The additive union betweenA andB leads to put together the elements ofA andB and it produces the
following fuzzy bag:{〈1,0.9,0.5,0.1,0.1〉/a, 〈0.5〉b} which can also be represented with fuzzy numbers
of occurrences by{{1/0,1/1,0.9/2,0.5/3,0.1/4,0.1/5}/a, {1/0,0.5/1}/b}. This can be evaluated by
adding the number of occurrences of a (resp.b) in A and the number of occurrences of a (resp.b) in B:

�A+B(a)= �A(a)+ �B(a) = {1/0,1/1,0.1/2,0.1/3} + {1/0,0.9/1,0.5/2}
= {1/0,1/1,0.9/2,0.5/3,0.1/4,0.1/5}.

�A+B(b) = �A(b)+ �B(b) = {1/0,0.5/1} + {1/0} = {1/0,0.5/1}.
A fuzzy bagA is said to be a subbag of a fuzzy bagB if and only if there are at least� occurrences of

x in A then there are at least� occurrences ofx in B, for anyx ∈ X and� ∈ N+. Formally, we have

A ⊆ B iff ∀x ∈ X, ∀� ∈ N+, ��A(x)(�)���B(x)(�). (12)

This yields to define a gradual inclusion in order to evaluate the extent to which a fuzzy bagA is a subbag
of a fuzzy bagB. When the standard conjunction and Gödel implication are chosen, we get

�⊆(A,B)= min
x∈X, min

�∈N+(��A(x)(�) ⇒f ��B(x)(�)),

with : (p ⇒f q) = 1 whenp�q,
= q otherwise. (13)

Example 2.4. LetAandB be two fuzzy bags:A = {{1/0,1/1,0.9/2,0.4/3}∗a};B = {{1/0,1/1,0.8/2,
0.5/3}∗a}. The extent to whichA is included intoB is evaluated by

�A⊆B = min(1 ⇒Gö 1,1 ⇒Gö 1,0.9 ⇒Gö 0.8,0.4 ⇒Gö 0.5) = min(1,1,0.8,1) = 0.8.

Due to the Gödel implication semantics, the degree 0.8 is the thresholdt such thatA� ⊆ B�,∀� ∈]0, t].
Independently Miyamoto[21] proposed a characterization of fuzzy bags which is quite similar to

our approach. Miyamoto propositions are also based on the property of distributivity of�-cuts which
allows crisp bags to be considered as a special case of fuzzy bags (such a property is not always satisfied
[27] by the original Yager’s model [30]). In [21] an elementx of a fuzzy bagA, is characterized by
a decreasing sequence of membership degrees of the different occurrences ofx in A. Thus, if x has
p occurrences inA then x is characterized by the sequence of degrees: (�1

A(x), �2
A(x), . . . , �

p
A(x))

with �1
A(x)��2

A(x)� · · · ��pA(x). An operation (for example∩) between two fuzzy bagsA andB
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is defined by combining degrees of the same rankj (�jA∩B(x) = �jA(x) ∧ �jB(x)). It is clear that a
membership sequence (�1

A(x), �
2
A(x), . . . , �

p
A(x)) can be viewed as a representation of a fuzzy number of

occurrences�A(x) = {�1
A(x)/1, �

2
A(x)/2, . . . , �

p
A(x)/p} and that�A∩B(x) = min(�A(x), �B(x)) leads

to combinations�jA∩B(x) = �jA(x)∧�jB(x)) because the characteristic functions of fuzzy integers�A(x)
and�B(x) are decreasing. However, it seems very important to us to put forward the concept of fuzzy
integer (not only sequences of degrees) which both generalizes the notions of integer and degree with their
associated operators. Thus, operations over collections (sets, fuzzy sets, bags or fuzzy bags) are treated
in a similar way (because they can be defined through a common mechanism: fuzzy cardinalities) and,
consequently, the algebra over these structures is still reduced to a small number of operators. Moreover,
the emergence of the concept of fuzzy integer can be enlarged to other structures such asZf or Qf (it
is our objective in this paper) which provide foundations for dealing with problems about absolute or
relative quantifications. Finally, in[21], Miyamoto defines the cardinality of fuzzy bagA on a universe
U , by

∑
x∈U

∑
j �jA(x). This definition is derived from a� Count approach which can be viewed as an

approximation of a fuzzy cardinality. In our approach, the cardinality ofA is naturally defined by afuzzy
cardinality: |A| = ∑

x∈U �A(x) providing anexact(butgradual) representation of the cardinality ofA.
From this cardinality it is then possible to evaluate anapproximationonR thanks to a Lebesgue integral
(similarly to the method used in Sections 4.3.A and 5.3 in this paper).

3. Fuzzy relative integers

In Section 2 we have shown that (Nf ,+) is a monoid, in this section, we extendNf to Zf in order to
build up a group structure.

Let us consider the equivalence relationR such that

∀ (x+, x−) ∈ Nf × Nf , ∀(y+, y−) ∈ Nf×Nf , (x+, x−)R(y+, y−) iff
x+ + y− = x− + y+, (14)

where+ is the addition onNf . The set of fuzzy relative integers is defined by

Zf = (Nf × Nf )/R, (15)

which is the quotient set of all equivalence classes on (Nf × Nf ) defined byR.

Example 3.1. Let a andb be two fuzzy naturals integers:a = {1/0,1/1,0.8/2,0.5/3,0.2/4}; b =
{1/0,1/1,0.3/2}. Then the following pair(a, b) is one instance of an equivalence class which defines a
fuzzy relative integer:

(a, b) = ({1/0,1/1,0.8/2,0.5/3,0.2/4}, {1/0,1/1,0.3/2}).
Other instances of this class could be

(a′, b′) = ({1/0,0.8/1,0.5/2,0.2/3}, {1/0,0.3/2}),
(a′′, b′′) = ({1/0,1/1,0.9/2,0.8/3,0.5/3,0.2/4}, {1/0,1/1,0.9/2,0.3/3}).
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Fig. 2. A graphical representation of a fuzzy relative integer(a, b) and its compact representation(a, b)c.

Each�-cut of a fuzzy relative integer(x+, x−) is a pair of positive integers (x+
� , x

−
� ) which can be

interpreted as a relative integer (x+
� − x−

� ). Consequently, any fuzzy relative integerx has a unique
canonical representativexc which can be obtained by enumerating the values of its different�-cuts onZ:

xc =
∑

�i/(x
+
�i − x−

�i ), (16)

where�i ’s correspond to the different�-cuts ofx.

Example 3.2. The compact denotation of the fuzzy relative(a, b) (cf. Example3.1) is(a, b)c = {1/0,
0.8/1,0.5/2,0.3/1,0.2/2}c which is graphically represented in Fig. 2.

Let (x, y) ∈ Zf × Zf , the addition (+) and the product (×) on Zf are defined by

x + y = (x+, x−)+ (y+, y−) = (x+ + y+, x− + y−), (17)

x × y = (x+, x−)× (y+, y−) = ((x+ × y+)+ (x− × y−), (x+ × y−)+ (x− × y+)). (18)

As the arithmetic operations onNf can be defined in terms of operations on their�-cuts, an operation
# (+ or ×) on Zf is also compatible with�-cuts and the following property holds:

(x#y)� = x�#y�, (19)

where the operation # (in the right part of this expression) is an operation onZ.
The addition is commutative, associative and has a neutral element, denoted by 0Zf , defined by the

class{(a, a)/a ∈ Nf }.
Each fuzzy relative integerx = (x+, x−) has an opposite, denoted by−x = (x−, x+), such that

x+ (−x) = (x+ +x−, x− +x+)which is exactly 0Zf (+ is commutative). This property is remarkable in
comparison with the framework of usual fuzzy numbers where ‘approximately 1’ minus ‘approximately
1’ returns a value corresponding to ‘approximately 0’which is not exactly 0. Consequently, the difference
operation onZf is given by

x − y = x + (−y) = (x+ + y−, x− + y+). (20)

So, inZf , the difference between two numbers is always defined and can be represented by a unique
canonical representative[25].
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It can be easily checked that this product is commutative, associative and distributive over the addition.
The neutral element, denoted by 1Zf , is the fuzzy relative integer ({1/0,1/1}, {1/0}). Therefore we
conclude that (Zf ,+,×) forms a ring.

In bag theory, the difference between two bagsA andB is defined as the relative complement ofA∩B
with respect toA. Unfortunately, onNf , the difference operation between two bagsA andB cannot
always be computed because an elementx of A − B is not always characterized by a positive fuzzy
integer. Thus, in the continuity of propositions of Blizard[2] and Chakrabarty [6,7], where the concept of
shadow bag is defined as a generalization of the concept of bag, in [25] we have shown thatZf provides
a sound framework in which the generalization of fuzzy bags is well-founded and where the difference
of two fuzzy bags can always be defined.

4. Fuzzy rational numbers

On Zf , only the elements of classes(1,0) and(0,1) have a multiplicative reciprocal. We now extend
Zf to Qf in order to achieve field properties and to create a commutative ring in which every nonzero
element is invertible.

4.1. Definition ofQf

Let Z∗∗
f be the set of fuzzy relative integers such that:∀z ∈ Z∗∗

f , ∀� ∈]0,1], z� �= 0. Mathematically,
we may define a fuzzy rational number as a pair of fuzzy relative integers[xn, xd ] ∈ Zf × Z∗∗

f and an
equivalence relationR′ upon such pairs specified by the rule:

∀(xn, xd) and (yn, yd) ∈ Zf × Z∗∗
f , [xn, xd ]R′[yn, yd ] iff xn × yd = yn × xd. (21)

The set of fuzzy rational numbers is then

Qf = (Zf × Z∗∗
f )/R′, (22)

it is the quotient set of all equivalence classes on (Zf × Z∗∗
f ) defined byR′.

An instance of a fuzzy rational number denoted by[xn, xd ] can also be rewritten with fuzzy natural
integers:[(xn+, xn−), (xd+, xd−)].

The�-cut of a fuzzy rational numberx is defined by

∀� ∈]0,1], x� = [xn� , xd� ] = [(xn+� , xn−� ), (xd+
� , xd−

� )]. (23)

Because of the distributivity of the�-cut function over the addition and the multiplication onZf , if
x andy are two fuzzy rational numbers, their�-cuts are compatible with the equivalence relationR′,
and then

[xn, xd ]R′[yn, yd ] iff ∀� ∈]0,1], xn� × yd� = xd� × yn� , ∀� ∈ [0,1]. (24)

The representation of a fuzzy relational numberx with a couple of fuzzy natural integers is not
very tractable. So, let us now introduce a more convenient notation. We use a more simple compact
representation (denoted byxc) by enumerating values associated with the different�-cuts which are
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rationals. With such a representation a fuzzy relational number can be defined by

xc =
∑

�/(xn+� − xn−� )÷ (xd+
� − xd−

� ). (25)

If all ratios (xn+� − xn−� )÷ (xd+
� − xd−

� ) are reduced, then we get a canonical compact form ofx.

Example 4.1. Let us consider the two fuzzy positive relative integers:

(xn+, xn−) = ({1/0,1/1,0.8/2,0.5/3,0.2/4},0); (xd+, xd−) = ({1/0,1/1,0.3/2},0).
The pair[(xn+, xn−), (xd+, xd−)] represents a fuzzy rational numberx which belongs toQf . Such a
number can be written in many other forms, for example

[(yn+, yn−), (yd+, yd−)] = [({1/0,1/1,0.8/2,0.5/3,0.2/4,0.2/5,0.2/6},0),
({1/0,1/1,0.3/2,0.2/3},0)].

As a matter of fact,x is equivalent toy by R′ because

xn+ × yd+ = xd+ × yn+ = {1/0,1/1,0.8/2,0.5/3,0.3/4,0.3/5,0.3/6,0.2/7,0.2/8,0.2/9,
0.2/10,0.2/11,0.2/12}.

For all �-cuts in{1,0.8,0.5,0.3,0.2}, we get((xn+� × yd+
� ),0) = ((xd+

� × yn+� ),0). This means that
xn+� ÷ xd+

� = yn+� ÷ yd+
� . These ratios are respectively: 1÷ 1,2÷ 1,3÷ 1,3÷ 2 and 4÷ 2. Thus,x and

y have the same canonical compact representation defined by

{1/1,0.8/2,0.5/3,0.3/3 ÷ 2,0.2/2}c.

4.2. Operations onQf

The addition and product of two fuzzy rational numbersx andy, represented by pairs of relative
integers,[xn, xd ] and[yn, yd ], are defined by the following rules:

[xn, xd ] + [yn, yd ] = [(xn × yd)+ (yn × xd), xd × yd ], (26)

[xn, xd ] × [yn, yd ] = [xn × yn, xd × yd ]. (27)

These definitions extend the usual crisp definitions and are compatible with the concept of�-cuts. The
addition is commutative, associative and has an additive identity[0Zf ,1Zf ], denoted by 0Qf , such that

[xn, xd ] + [0Zf ,1Zf ] = [(xn × 1Zf )+ (0Zf × xd), xd × 1Zf ] = [xn, xd ].
The product is commutative, associative and has an neutral element[1Zf ,1Zf ], denoted by 1Qf , corre-
sponding to the class:{[a, a]/a ∈ Z∗∗

f }:
[xn, xd ] × [a, a] = [xn × a, xd × a] ≡ [xn, xd ].

For each elementx = [xn, xd ] belonging toQ∗∗
f = (Z∗∗

f × Z∗∗
f ))/R′ (which means that∀x ∈ Q∗∗

f ,∀� ∈
]0,1], x� �= 0), there exists an inversex−1 = [xd, xn], such thatx × x−1 = 1Qf :

x × x−1 = [xn × xd, xd × xn] ≡ [1Zf ,1Zf ] = 1Qf (× is commutative).
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Table 1
Division and�-cuts

� Dividend� Divisor� (Dividend÷ Divisor)�

1 1 1 1
0.8 2 1 2
0.5 3 1 3
0.3 3 2 3÷ 2
0.2 4 2 2

Consequently we can define an exact division operation,÷, onQf × Q∗∗
f , such that

x ÷ y = x × y−1 = [xn × yd, xd × yn]. (28)

With such a definition the following property holds onQf :

y × (x ÷ y) = x.

This property is remarkable because it is not always satisfied if we consider “ordinary fuzzy numbers”
representing ill-known quantities based on an extension of the interval framework.

Proof. The division between two fuzzy rational numbersx andy is defined byx÷y = [xn×yd, xd×yn].
So, the producty × (x ÷ y) is [yn × xn × yd, yd × xd × yn]. Such a result is equivalent to[xn, xd ] by
R′ because:yn × xn × yd × xd = yd × xd × yn × xn (× is commutative).

Example 4.2. Let us consider the two fuzzy relative integers:

dividend= ({1/0,1/1,0.8/2,0.5/3,0.2/4},0) = {1/1,0.8/2,0.4/3,0/2/4}c,

divisor = ({1/0,1/1,0.3/2},0) = {1/1,0.3/2}c.

The division (dividend÷ divisor) can be evaluated by�-cuts. From Table 1 we deduce the compact
form of the exact division (dividend÷ divisor) onQf : {1/1,0.8/2,0.5/3,0.3/3÷ 2,0.2/2}c. Fig. 3 is a
graphical representation of this result.

Note that, if dividend equals divisor the result is{1/0,1/1}.

4.3. Approximations of the exact division onQf

The main interest ofQf is to provide an algebraic basis allowing exact divisions and calculus compo-
sitions. From an exact result evaluated onQf , it is then possible to perform different approximations, for
examples onNf or R, depending on application domain needs. This subsection shows how such these
approximations (or summarizations) can be extracted from an exact calculation.

4.3.1. Euclidian division
OnNf , the difference between two fuzzy integersa andb is not always defined, even ifa is greater then

b. For example, let us considera = {1/0,1/1,0.8/2,0.5/3,0.2/4} andb = {1/0,1/1,0.3/2}, there is
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Fig. 3. A graphical representation of the exact division (dividend÷ divisor).

no s such that:a = b + s. This leads us to define an approximate difference[24], noteda)-(b, as the
greatest fuzzy integers satisfyingb + s�a.

Such a definition specifies the best lower approximation of the difference between two fuzzy natural
integers. In the domain of fuzzy equations this operation )-( is called an optimistic difference [28]. We
have noticed that the difference denoted by )-( allows to specify the best lower approximation onNf of
the exact difference onZf .

In the same way, a division denoted by )÷(, similar to the optimistic division defined by Sanchez,
allows to specify the best lower approximation onNf of the exact division onQf . This division is such
that, for two fuzzy numbers dividend and divisor,Q = dividend )÷( divisor is thegreatestfuzzy natural
integerq such that divisor× q�dividend. This is an extension of the Euclidian division.

Such a result can be iteratively evaluated by using the difference onNf as illustrated in the following
algorithm:
R := dividend;
Q := 0;
while (divisor �R) do begin
R := R )-( divisor;
Q := Q+ 1

endo.
At this step the value ofQ is the greatest positive integerq such that

(divisor× q + R = dividend) andnot (divisor�R).

The value ofQ is the integer multiplicityfactor between dividend and divisor. We can go further by
evaluating afuzzymultiplicity factor.

As fuzzy integers form a lattice, the property:not (divisor�R) does not imply (divisor> R). For
example, when divisor= {1/0,1/1,1/2,0.3/3} and R = {1/0,1/1,0.8/2,0.5/3}. Let �1 be the
extent to which divisor�R (i.e.: �1 is the greatest threshold such that:∀� ∈]0, �1], divisor��R�

[23] or, in other words,�1 is the greatest degree such that:{1/0, �1/1} × divisor�R). The difference
R := R − ({1/0, �1/1} × divisor) can be performed and repeated until the predicate (R < divisor)
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becomes true. This leads to

dividend= q × divisor+ ({1/0, �1/1} × divisor)+ · · · + ({1/0, �n/1} × divisor)+ R

= {1/0,1/1, . . . ,1/q, �1/q + 1, . . . , �n/q + n} × divisor+ R and(divisor> R). (29)

Consequently, the fuzzy number quotientQ = {1/0,1/1, . . . ,1/q, �1/q+1, . . . , �n/q+n} is thegreatest
positive fuzzy integerq such as divisor× q�dividend.

This decomposition helps us to understand the meaning of a fuzzy multiplicity factor onNf defined
by a fuzzy integer quotient such as{1/0, �1/1, . . . , �n/n}. In such a number a degree�i is the extent to
which (i × divisor) is smallerthan dividend.

Example 4.3. Let us consider the values of dividend and divisor defined in Example4.2:

dividend= {1/0,1/1,0.8/2,0.5/3,0.2/4}; divisor = {1/0,1/1,0.3/2}.
The Euclidian division using successive differences is given by computingR1 andR2:

R1 = dividend)-( divisor = {1/0,0.8/1,0.2/2},
as the extent to which divisor is smaller thanR1 is min(1 ⇒f 1, 1 ⇒f 0.8, 0.3 ⇒f 0.2) = 0.2, it is
possible to subtract the divisor fromR1 but just ‘until’ the�-cut 0.2:

R2 = R1 )-( [{1/0,0.2/1} × divisor] = {1/0}.
We then deduce

dividend)÷( divisor = {1/0,1/1} + {1/0,0.2/1} = {1/0,1/1,0.2/2}.
The product:{1/0,1/1,0.3/2} × {1/0,1/1,0.2/2} = {1/0,1/1,0.2/2,0.2/3,0.2/4} is smaller than
{1/0,1/1,0.8/2,0.5/3,0.2/4} and{1/0,1/1,0.2/2} is the greater fuzzy natural number satisfying such
a property. This result is a fuzzy multiplicity factor where the degree 0.2 means the extent to which 2×
divisor is smaller than dividend.

The Euclidian division (dividend )÷( divisor) is the best approximation by lower value onNf of the
exact division (dividend÷ divisor) on Qf represented by{1/1,0.8/2,0.5/3,0.3/3 ÷ 2,0.2/2}c (see
Fig. 4).

4.3.2. Other approximations
In the previous paragraph, the Euclidian division has been defined as a lower approximation onNf

of the exact division (dividend÷ divisor) onQf . In a symmetric way, as shown in Fig. 4, an another
estimation could be given by computing the best upper value onNf of the exact division. These two
approximations provide an interval onNf which estimates the exact division.

A scalar counterpart of an exact division onQf can be given by the expected value[13,14] given by a
Lebesgue integral:

E(dividend÷ divisor) =
n∑
i=1

(dividend÷ divisor)�i × (�i − �i+1), (30)

where the degrees�i are decreasingly ordered: 1= �1 > �2 > · · · > �n−1 > �n = 0.
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Fig. 4. Different approximations of an exact division onQf .

Such a measure is an approximation onR of the exact division. It gives an idea of the real shape of the
exact division.

Example 4.4. The expected value of the division (dividend )÷( divisor) (cf. Example4.3) onR is

(1 − 0.8)× 1 + (0.8 − 0.5)× 2 + (0.5 − 0.3)× 3 + (0.3 − 0.2)× 1.5 + 0.2 × 2 = 1.95

and the different approximations of the exact result can be graphically represented by Fig. 4.

5. Division operations and some applications to flexible querying

This work takes place in the study of a query language which allows the formulation of imprecise queries
addressed to databases. In this framework, this section first proposes generalizations of the relational
division thanks to an Euclidian division. Next, the interest of the arithmetic onQf is illustrated through
the management of a query involving an average function or the evaluation of comparison indices of
fuzzy collections.

5.1. Generalization of the relational division

The notion of division is well known in the relational model of data. For example, the query looking
for the stores having in stock all the ordered productsis based on a division which finds the stores such
that the set of their stored products contains the set of ordered products.

A first extension may be imagined by introducing some graduality in the previous query, which would
be: find the stores having among their recent stored products all the expensive ordered products. This
kind of query has been studied in the relational framework[4] using fuzzy relations.

Other data models, for example object oriented models, support complex data structures, such as bags.
For example, collections of ordered products or stored products can account for numbers of occurrences
of their elements and can be modeled by bags. In this situation, a query corresponding to a division would
then be:find the stores having in stock all the ordered products and the number of times each of them
can deliver this order.
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More generally, a model supporting fuzzy bags takes advantage of both graduality and number of
occurrences. For example, the stock of a store can be modeled as a fuzzy bag where each copy of a
product is associated with a degree of membership because it may have been stored in more or less
recently. In this case, the assessment of the number of times (a bag of) ordered products are contained in
(a fuzzy bag of) recently stored products leads to define a fuzzy factor of multiplicity.

In the following, we first analyze the division on sets and fuzzy sets in the framework of the relational
model, then we show how this operator can be generalized on bags and fuzzy bags.

5.1.1. Divisions on sets and fuzzy sets
In the context of the relational model of data, a universe is modeled as a set of relationsRi which

are subsets of the Cartesian product of some domains. The relational division ofR(A,X) by S(A, Y ),
denoted byR[A ÷ A]S, whereA is a set of attributes common toR andS, aims at determining the
X-values connected inR with all theA-values appearing inS. Formally this operation can be defined by

x ∈ R[A÷ A]S ⇔ ∀s, s ∈ S[A] ⇒ (x, s) ∈ R. (31)

If S′ = {s|s ∈ S[A]} andx.R′ = {s|(x, s) ∈ R} thenR[A÷ A]S can also be defined by

x ∈ R[A÷ A]S ⇔ S′ ⊆ x.R′. (32)

For example, if we know the stores which keep in stock products (relationR), on the one hand, and
ordered products (relationS), on the other hand, the query looking forthe stores able to deliver all the
ordered productsis a division ofR by S. These stores are such that the set of the ordered products is
includedin the set of their stored products.

A generalization of the relational division, based on fuzzy relationsR andS, has been proposed in[4].
The expression (31) has been extended by changing the usual implication into a multiple-valued one and
interpreting the universal quantifier as a generalized conjunction:

�R[A÷A]S(x) = inf
S
(�S(s) ⇒f �R(x, s[A])). (33)

As the implication models an inclusion, the division can be characterized by a degree of inclusion:

�R[A÷A]S(x) = �⊆f
(S′, x.R′). (34)

With the Gödel’s inclusion (based on the Gödel’s implication),�⊆f
(S′, x.R′) is the greatest threshold

such that:∀� ∈]0, t], S′
� ⊆ x.R′

�.
For example,S can be a fuzzy relation which represents the expensive ordered products andR can

depict stores and their products recently kept in stock. A query involving a division on these two fuzzy
relations could be:find the stores having in their stock of recently stocked products all the ordered
expensive products.So, we are looking for storesx such that the fuzzy set of expensive ordered products
(S′) is includedin the fuzzy set of their recent products (x.R′). In the result, the degree of membership
of a storex expresses the extent to whichS′ is included inx.R′.

5.1.2. Divisions on bags and fuzzy bags
We now assume that our data model supports two collection types which model bags and fuzzy bags.

It could be, for example, an object oriented model. Thus, we consider that the previous collectionsS′
andx.R′ can be either bags or fuzzy bags. The question is: how to take advantage of their ability to
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manage quantities when we deal with a query involving a division? Following this aim, we propose some
generalizations of the relational division.

5.1.2.1. Division operators on bags.We first consider thatS′ andx.R′ are bags. For example,S′ can
represent a bag of ordered products.S′ is a bag because each products is now associated with a number
of occurrences, denoted by�S′(s), corresponding to the number of copies which have been ordered. The
bagx.R′ is a bag of products kept in stock in a storex. The number of copies of a products in this stock
is denoted by�x.R′(s). We are concerned with queries such as:find the stores having enough stored
products to deliver all the ordered products.

So, we are looking for every storex satisfying the following constraint:

∀s ∈ S′, �S′(s)��x.R′(s), (35)

which means that the number of occurrences of a stored product inx is greater than the quantity of the
corresponding product in the order. These stores are such that the bag of the ordered products isincluded
in the bag of their stored products. The expression corresponds to the usual inclusion between bags.

However, the model allows a richer expressiveness, it can take into account the multiplicity factor
between the number of occurrences of an ordered product and the number of copies of this product in a
storex. This multiplicity is defined by

�x.R′(s) div �S′(s), (36)

where div is the (usual) Euclidian division. This operator allows to deal with queries such as:find the
number of times a store x can deliver all the ordered products.

From that it follows a definition of the division of bags expressingthe number of timesa bagis included
in another bag. This number is a multiplicity factor of the inclusion between two bags (denoted�⊆) and
is defined by

�⊆(S′, x.R′) = inf
S′ (�x.R′(s) div �S′(s)). (37)

This formula derives from (33) where the usual implication is changed into an Euclidian division
and the universal quantifier is interpreted as a generalized conjunction, here defined as theinfimum
on integers.

5.1.2.2. Division operators on fuzzy bags.We study the most general case and we now suppose that
S′ andx.R′ are two fuzzy bags. For example, the fuzzy bagx.R′ is a collection of more or less recent
products kept in stock byx. Because each copy of a product has been stored in a more or less recent
past and is associated with a level of freshness, each product is characterized by a fuzzy number of
occurrences inx.R′ denoted by�x.R′(s). The fuzzy bagS′ may be a fuzzy bag of ordered products.
Because it is possible to order different more or less fresh occurrences of a products, each product in
S′ is associated with a fuzzy number of occurrences denoted by�S′(s). For example, the fuzzy number
�S′(s) = {1/0,1/1,0.3/2} expresses that the user orders two occurrences ofs, the expected freshness
of the first one must be perfect, and the quality level of the second one has to be atleast higher than (or
equal) 0.3.

Once again, we are concerned with queries such as:find the number of times a store x can deliver, from
its stock of more or less fresh copies of products, all the ordered copies of products, taking into account



18 D. Rocacher, P. Bosc / Fuzzy Sets and Systems( ) --

ARTICLE IN PRESS

the minimum quality level of the expected copies. So, we now consider both numbers of occurrences and
degrees (relative to the freshness) which is interpreted as a threshold to be attained by a corresponding
occurrence of a stored product.

The extension of expression (37) leads to the following formula based on an (fuzzy) Euclidian division
applied on fuzzy numbers:

�⊆(S′, x.R′) = inf
S′ (�x.R′(s) )÷(�S′(s)). (38)

The fuzzy number�⊆(S′, x.R′) defines the fuzzy multiplicity factor between two fuzzy bags. It isthe
greatest fuzzy numbern such that, when multiplying all the numbers of occurrences of the elements of
S′ by n, a fuzzy bagincludedin x.R′ is obtained.

Example 5.1. If the stock of the storex is characterized by the following fuzzy bagx.R′ = {{1/0,1/1,
0.8/2,0.5/3,0.2/4}∗s} and the user’s order is characterized byS′ = {{1/0,1/1,0.3/2}∗s}, the number
of times this order can be provided byx is

{1/0,1/1,0.8/2,0.5/3,0.2/4} )÷( {1/0,1/1,0.3/2} = {1/0,1/1,0.2/2}.
Such a fuzzy multiplicity factor means that the storex can deliver one time two occurrences ofs with the
expected levels of quality. Two other occurrences can be delivered but, in this case, the extent to which
the user is satisfied is 0.2.

As matter of fact, if the order is delivered one time, the rest of stored products becomes{1/0,1/1,0.8/2,
0.5/3,0.2/4} )−( {1/0,1/1,0.3/2} = {1/0,0.8/1,0.2/2}. As the extent to which{1/0,1/1,0.3/2} is
included in{1/0,0.8/1,0.2/2} is given by min(1 ⇒f 0.8,0.3 ⇒f 0.2) = 0.2 (using Gödel implication),
it can be deduced that the order can be delivered once again but only with the user satisfaction 0.2.

So, the inclusion ofS′ inx.R′ is characterized by the fuzzy multiplicity factor onNf = {1/0,1/1,0.2/2}
where the degree 0.2 expresses the extent to whichS′ is included inx.R′ two times.

To conclude this subsection, we notice that expression (38) is the most general expression of the division
between collectionsx.R′ andS′.As a matter of fact, a degree of membership of an elementx in a fuzzy set
A(�A(x)) is a special case of a fuzzy number (denoted:{0/1,1/�A(x)}), and a number of occurrences of
an elementx in a crisp bagA (�A(x)) is a special case of a fuzzy number (denoted:{1/0, . . . ,1/�A(x)}).
When (38) is applied to these specific fuzzy numbers (respectively degrees and integers) we can easily
check that the obtained results are consistent with (33) and (38).

5.2. Division and fuzzy average

In databases, we may have to evaluatethe average of the salaries of young peoplewhere salaries are
precisely known. In this subsection, we illustrate that the evaluation of an average function, as proposed
by Dubois and Prade [14], can also be viewed as an evaluation of a weighted mean onQf .

Dubois and Prade propose to extend a set-function, such as the average function, to a fuzzy setF as a
random number defined by

average(F ) = {average(F�i ), m(F�i ))/i = 1,2, . . . , n},
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where�i ’s are the non-zero membership degrees inF decreasingly ordered (�1 = 1 > �2, . . . > �n >
�n+1 = 0) andm(F�i ) = �i − �i+1.

The scalar counterpart of this definition is the expected value given by

E(average(F )) =
n∑
i=1

(�i − �i+1)× average(F�i ). (39)

Example 5.2. Let us consider the following fuzzy set of personsY = {1/p1,1/p2,0.4/p3,0.1/p4}.
We suppose that their salaries are respectively: 2000, 1000, 2000 and 1000 euros. The average of salaries
of people inF�i for the different a-cuts are:

� F�i Average (F�i )

1 {2000,1000} 1500
0.4 {2000,1000,2000} 1666.6
0.1 {2000,1000,2000,1000} 1500

The scalar evaluation of the average of the salaries of the young peopleY is then:

(1 − 0.4)× 1500+ (0.4 − 0.1)× 1666.66+ (0.1 − 0)× 1500= 1550.

The arithmetic onQf allows to evaluate an average function. Hence, the averageA of a fuzzy bagS
of valuesxi is evaluated just as an extension onQf of a usual arithmetic weighted mean but considering
fuzzy numbers of occurrences. It is defined as follows:

A =
(

n∑
i=1

�S(xi)× xi

)
÷

n∑
i=1

�S(xi). (40)

Due to the algebraic properties ofQf , it is worth noticing that the following property holds:

n∑
i=1

[
�S(xi)÷

n∑
i=1

�S(xi)

]
= 1.

Example 5.2(continued). The collection of salaries of the young peopleY is the fuzzy bag:S =
〈1/2000,1/1000,0.4/2000,0.1/1000〉, which can also be represented using fuzzy cardinalities byS =
{{1/0,1/1,0.4/2}∗2000, {1/0,1/1,0.1/2}∗1000}. The relative weights of the salaries 2000 et 1000 are
respectively:

w1 = {1/1,0.4/2}c ÷ [{1/1,0.4/2}c + {1/1,0.1/2}c] = {1/1 ÷ 2,0.4/2 ÷ 3,0.1/1 ÷ 2}c,

w2 = {1/1,0.1/2}c ÷ [{1/1,0.4/2}c + {1/1,0.1/2}c] = {1/1 ÷ 2,0.4/1 ÷ 3,0.1/1 ÷ 2}c.
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If we use an approach by�-cuts (cf. 4.2), we easily check that:w1 +w2 = 1. Because a integern can
be represented by the fuzzy number{1/n}c, the average of salaries can be performed by

A= (w1 × {1/2000}c)+ (w2 × {1/1000}c)
= {1/2000÷ 2,0.4/4000÷ 3,0.1/2000÷ 2}c + ({1/1000÷ 2,0.4/1000÷ 3,0.1/1000÷ 2}c

= {1/1500,0.4/5000÷ 3,0.1/1500}c.

This fuzzy rational numberA corresponds to an exact representation of the average of the salaries of the
young peopleY . From this exact evaluation, it is then possible to extract different estimates. A scalar
estimate can be computed thanks to a Lebesgue integral:

E(A) = (1 − 0.4)× 1500+ (0.4 − 0.1)× 1666.66+ (0.1 − 0)× 1500= 1550.

This result is similar to the scalar value obtained via the previous approach originally proposed by Dubois
and Prade which exploits a random set view of a fuzzy set.

5.3. Divisions and similarity measures

Inclusion grades and similarity measures between two fuzzy setsA andB are very numerous in the
literature. Thus, there is a family of comparison indices based on the cardinalities of fuzzy sets, such as

inclusion_index(A,B) = |A ∩ B|
|A| ,

equality_index(A,B) = |A ∩ B|
|A ∪ B| ,

overlap_index(A,B) = |A ∩ B|
|A| × |B| .

The above definitions are generally based on a scalar evaluation of the cardinality of a fuzzy set
F , defined by:|F | = ∑

x∈U �F (x). Such an evaluation (called� Count(F )) can be viewed as an
approximation onR of the FGCount(F ) function defined by Zadeh. Consequently, using� Counts the
above indices are obtained by a calculus over approximations.

In Section2.2, the fuzzy cardinality FGCount(F ) is considered as an exact representation of the
cardinality ofF and it is interpreted as a fuzzy integer belonging toNf . Following the approach developed
in this paper, the idea pushed forward in this subsection, is that, using the arithmetic onQf , it is possible to
naturally and straightforwardly perform exact evaluations of these indices. Then, in an ultimate step, from
the resulting exact evaluations, it is possible to extract different estimates. For example, scalar estimates
can be computed using a Lebesgue integral as it has been done in Section 5.2 for the average.

Example 5.3. LetA andB be fuzzy sets:A={1/a,0.6/b,0.7/c,0.7/d,0.1/e}; B={1/a,0.6/b,0.7/c,
0.7/e}. The scalar cardinalities ofA ∩ B andA are

|A|R = 1 + 0.7 + 0.7 + 0.6 + 0.1 = 3.1,

|A ∩ B|R = 1 + 0.7 + 0.6 + 0.1 = 2.4.
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Based on these approximations, the usual inclusion index betweenA andB is

inclusion_index(A,B) = 2.4

3.1
= 0.77.

In the framework ofQf , we obtain

|A|Qf = {1/1,0.7/3,0.6/4,0.1/5}c,

|A ∩ B|Qf = {1/1,0.7/2,0.6/3,0.1/4}c,

inclusion_index(A,B)Qf = {1/1,0.7/2 ÷ 3,0.6/3 ÷ 4,0.5/4 ÷ 5}c.

Based on this exact representation of the inclusion index onQf , we perform its approximation onR thanks
to a Lebesgue integral:

inclusion_index(A,B)= (1 − 0.7)× 1 + (0.7 − 0.6)× 0.66+ (0.6 − 0.1)× 0.75
+(0.1 − 0)× 0.8 = 0.82.

The relative cardinality of a fuzzy setA with respect a fuzzy setB can be interpreted as the proportion
of elements ofB that are inA. Possibilistic and probabilistic definitions of this notion are proposed
by Delgado et al.[8]. These definitions are based on divisions by�-cuts (|(A ∩ B)�| / |(B)�|), similarly
to our approach. However, our interpretation of the result is specific. As explained in Section 2.2 for
the representation of fuzzy integers, we claim that possibilistic, probabilistic or representation based on
FGCount (a fuzzy rational is a couple of fuzzy natural integers) of a relative cardinality can be viewed as
three equivalent representations of thesamewell-defined information corresponding to a fuzzy (gradual)
rational quantity.

Finally, in the framework ofQf , we notice that the previous indices can be easily generalized to compare
two fuzzy bags because the cardinality of a fuzzy bag is a fuzzy integer (7).

6. Conclusion

This paper extends previous propositions related to fuzzy bags found in the following articles [22–25].
These works aim at defining the concept of fuzzy bag using a well-founded framework in which sets,
fuzzy sets and bags can be viewed as particular cases of fuzzy bags. All of these structures are homo-
geneous and compatible because they are defined through a common mechanism: fuzzy cardinalities.
Consequently, a small number of generic operators can be applied to these different collections. Using
this approach, a fuzzy cardinality is interpreted as a gradual number which, taken as a whole, completely
and exactly describes the cardinality of a fuzzy collection. This view of fuzzy numbers differs from the
usual one, interpreting a fuzzy number as a possibility distribution describing the ill-known values of
one variable, and has important consequences with regards to algebraic properties. Furthermore, we have
shown that such a context offers powerful tools allowing the expression of flexible queries addressed to
usual databases taking into account both preferences and quantities. However, it is worth mentioning that
the considered concepts are general and can be applied to many other domains.

In this paper, this point of view is enlarged and we evoked how the set of natural integers (Nf ) has
been extended to the set of relative integers (Zf ). In this framework, the difference between two fuzzy
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integers is always exactly defined in terms of one equivalence class of pairs of fuzzy natural integers. It
has been shown that each equivalence class can be identified by a unique canonical representative and
can easily be manipulated using�-cuts. This approach has been pursued by extendingZf to Qf (the set
of fuzzy rational numbers) where each number is defined in terms of one equivalence class of pairs of
fuzzy relative integers also identified by a unique canonical representative. It is noteworthy that the set of
fuzzy integers, with both addition and product, forms a ring and the rational numbers form the algebraic
structure of a field. These new frameworks provide an arithmetic basis where difference or ratio between
fuzzy quantities can be exactly evaluated. The obtained results can then be composed and used inside
more complex calculations. Next, from an exact evaluation of an arithmetic expression onZf or Qf , it
is possible to extract different approximations, onNf or R, for example, depending on users or applica-
tions needs.

In the future, complementary studies have to be carried out so as to define fuzzy order relations. Such
comparisons between (fuzzy or crisp) quantities are essential in particular for dealing with flexible queries
using absolute or relative fuzzy quantifiers such as:find the best five companies in which the number
of young employees is greater than the number of well-paid employeesor find the best five companies
in which most of the young employees are well-paid. A preliminary study, which can be found in[26],
shows that these fuzzy order relations rely on difference or division operators onQf and can be viewed
as a generalization of fuzzyR-implications. These investigations will be developed in future works.

Mathematicians in the past have introduced the notions of fuzzy real line [16] and subspaces of the
real line [19]. We think thatQf and the characterization of fuzzy order relations should open the door to
the construction ofRf using a generalization of Dedekind cuts or Cauchy sequences.
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