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Abstract

A fuzzy bag is a bag in which each occurrence of an element is associated with a grade of membership. This
notion can be viewed as a generalization of the concepts of set, fuzzy set and bag. The set of fuzzy itegers (
provides a general characterization in which all these different concepts are treated in a uniform way and can then
be composed. In the field of databases, the use of fuzzy bags is motivated by their ability to manage both quantities
and preferences. Howeveét; becomes too restricted a framework when dealing with queries based on difference
or division operations. So, a more general structure based on the set of fuzzy relative inkggersvbich exact
differences can be performed, has been first developed. In this paper, we carry on with this approach and we extend
Zs to the set of fuzzy rational number@y). This context leads to define a closed system of multiplicative operations
and allows to perform exact divisions. Applied to flexible querying of datab@geand the notion of division on
fuzzy numbers allow to generalize the relational division. They define a sound basis for queries involving ratios
between quantities.
© 2005 Published by Elsevier B.V.

Keywords:Fuzzy integer; Fuzzy cardinality; Fuzzy rational number; Fuzzy bags; Bags; Fuzzy sets; Flexible querying

1. Introduction

An issue in extending database management functionalities is to increase the expressiveness of query
languages. Flexible queryiifig] enables usersto express preferencesinside requirements. Fuzzy settheory
offers a general framework for dealing with flexible queries and priorities inside compound queries. The
answers to such queries are then qualified and rank-ordered. Besides, the bag type [1,2], which offers
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the capability of managing quantities (numbers of occurrences of data items), plays an important role
in databasefl5,18] and data models (relational or object oriented) have been designed to support it.
Systems taking into account both flexible queries and bags motivate the use of fuzzy bags. For example, a
fuzzy bag can be obtained when some attributes are removed from a fuzzy set of tuples. This is illustrated
by the queryfind the salaries of young employeehich requires a projection (salary) of a fuzzy set

of persons (the young employees) and delivers a fuzzy bag. As several employees may have the same
salary, the collection of salaries returned may contain duplicates. Moreover, a given salary occurrence
is associated with a more or less young employee and thus satisfies more or less the criterion “to be
the salary of a young employee”. Consequently, the different salaries returned by the query have to be
managed both quantitatively and qualitatively thanks to a fuzzy bag which represents the distribution of
the salaries of young employees.

Our research aim is to devise new structures capable of dealing with quantification and preferences on
data. These models can then be used for extending elementary query operators that provide a sound basi
for designing high level query languages such as OQL or SQL. So, we are mainly concerned with the
study of flexible querying of databases and we follow a pragmatic, application domain-driven approach.
But, it is worth mentioning that our investigations have a larger scope than the field of databases and
many other potential application domains could also benefit from fuzzy bags, such as fuzzy data mining,
summarization of data or fuzzy information retrieval.

Fuzzy bags and some of their operators have been defined by Yager in [30,31] and complementary
studies have been carried outin[7,8,9,17,20,21]. In[23,27], we have proposed a new approach for building
fuzzy bags so as to introduce operators compatible with both bags and fuzzy sets. Hence, we have showr
that fuzzy bags can be viewed as a generalization of fuzzy sets thanks to the consideration of an order
structure over the unit interval. Their characteristic function is then defined from a univeosthe set
of conjunctive fuzzy natural integersi{). However, in this context, the difference operation between two
bags A and B cannot always be computed. This problem comes from the fact that the fuzzy bag model
considered so far is based on positive fuzzy integers. It is the reason why the set of fuzzy relative integers
(75) was constructed. In such a framework, as discussed in [25], the diffefercB of two fuzzy bags
is always defined.

This paper, situated in the continuation of these works, aims at extedAgitmQs, the set of fuzzy
rational numbers. This context leads to define a closed system of multiplicative operations and to perform
exact divisions. The role of these arithmetic structures is illustrated in the field of flexible querying of
databases whef@ and the notion of division on fuzzy numbers allow to generalize the relational division
or to define a sound basis for queries calling on ratios between quantities.

The rest of this paper is organized as follows. Sections 2 and 3 recall some key notions which constitute
the background of the new contributions developed in Sections 4 and 5. Thus, Section 2 introduces the
concepts of fuzzy bags and fuzzy natural integers. The main definitions and operators are recalled in
Subsections 2.1 and 2.2. In Section 3, the extensiow; db Z; and the concept of a fuzzy bag defined
on Z; are briefly discussed. Next, Section 4 is devoted to a complementary study exténdng;.

Main definitions, operators and algebraic properties are first analyzed, then the exact divigioarah

its different approximations oRi; or R are more specifically considered. Last, the usefulness of these
propositions is emphasized in the database domain. Thus, in Section 5, we first study some generalizations
ofrelational applications thanks to approximate divisions, thenwe illustrate the intetigstben dealing

with a query such awhat is the average salary of a fuzzy set of young empl@y@esvhen evaluating

grades of inclusion and similarity measures based on divisions of fuzzy cardinalities.
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2. Fuzzy bags and fuzzy natural integers

In this section, we show how to specify fuzzy bags thanks to the concept of fuzzy natural integer so as
to introduce a structure compatible with both bags and fuzzy sets.

2.1. Fuzzy bags characterizations

A fuzzy bag is a bag in which each occurrence of an element is associated with a grade of membership
[30]. One way to describe a fuzzy bag is to enumerate its elements, for exatnplél/a, 0.1/a, 0.1/a,

0.5/b).

Thus, a fuzzy bag is a collection of elements with multiple occurrences and having degrees of mem-
bership. Bags and fuzzy sets can be viewed as particular cases of fuzzy bags. In the following, taking into
account this duality, we show that as the concept-ofits can be viewed as a bridge connecting bags
and fuzzy bags, symmetrically, the concepustuts (which is similar ta-cuts but related to numbers
of occurrences) established a link between fuzzy sets and fuzzy bags [23].

Bag operators can be extended to fuzzy bags thanks te¢heconcept, similarly to the extension of
a set into a fuzzy set. We define theut of a fuzzy bagA as the crisp bagi, which contains all the
occurrences of the elements of a univel'serhose grade of membership iis greater than (or equal)
to the degree (o €]0, 1]). The number of occurrences of the elemein A, is denoted bywa, (x). In
order to preserve the compatibility between bag and fuzzy bag structures, we define the intersection and
the union of fuzzy bags satisfying the following properties:

(ANB)y=A,NBy; (AUB),=A,UBy, 1)

where the union and intersection on bags B, are characterized bya, np,(x) = min(wa, (x), wp, (x)),
wA,UB,(X) = MaxX(wa, (x), wp,(x)).

Symmetrically, we bind fuzzy bag and fuzzy set structures by introducing the conceptuif The
w-cut of a fuzzy bagi is the fuzzy setA® such that the grade of membership of the elemeint A®,
denoted by . (x), defines the extent to which containsat leastw (with @ € NT) occurrences af:

fao(x) = SUR el @Ay (x) > ). 2)

Such a function allows to extend operations on fuzzy sets to their counterparts on fuzzy bags thanks to
the following properties:

(ANB)” = A”NB” (AUB)” = A”UB", 3)

where the union and intersection on fuzzy séts B are characterized by oqpgo (x) = MiN(ugo (x),
fpo (X)), pgoype(x) = MaX(uge(X), Lpo(x)).

These two characterizations lead us to put forward a new approach which merges both degrees and
numbers of occurrences into the unique concept of fuzzy natural integer.
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Fig. 1. A graphical representation of FGCoufit = {1/0, 1/1,0.4/2, 0.4/3}.

2.2. Fuzzy natural integers

The fuzzy cardinality]A| of a fuzzy setA, as proposed by ZaddB1], is called FGCoun&) and
defined by

Vn € N, “IAI(n) = SUFIO(HAﬂ}I’l}. (4)

Let us consider the fuzzy sdt = {1/x1, 0.4/x2, 0.4/x3}, then the fuzzy cardinality ofA is |[A| =
{1/0,1/1,0.4/2, 0.4/3}. The degree associated with a numberin the fuzzy cardinalityA| is inter-
preted as the extent to which hasat leastw elements. It is a normalized convex fuzzy set of integers
and the associated characteristic function is nonincreasing.

The amount of data id is completely and exactly described by the fuzzy{4¢0, 1/1, 0.4/2, 0.4/3}

(a graphical representation pf| is given by Fig. 1). But, other denotations may be used for represent-
ing |A|. For example, a possibilistic view ¢#| is given by the fuzzy set of the cardinalities of all its
a-cuts: {1/1, 0.4/3}2. Such a “compact” representation of the cardinalitydois only specified by the
characteristic pointgl, 1) and(3, 0.4). Fig. 1 can also be described using a probabilistic notation given

by {0.6/1, 0.4/3}3. So, we can view{1/0,1/1,0.4/2,0.4/3}, {1/1, 0.4/3}2, {0.6/1, 0.4/3}3 as three
different descriptions of theameinformation. Whatever the used representation, operations on fuzzy
cardinalities have to produce equivalent results. The advantage of the first one is its convexity. Conse-
quently, it satisfies the additivity property of classical cardinalities (based on the extension priddiple)

It is very important to notice that this kind of “fuzzy number” is not interpreted as a possibility
distribution, as “usual fuzzy numbers” [11] are, but it is viewed a®@ajunctivefuzzy set of integers.
In fact, the knowledge of all the cardinalities of all the differentuts of a fuzzy sef provides an
exact characterization of the number of elements belonging. tOf course, the considered fuzzy set
A represents a perfectly known collection of data (without uncertainty), consequently its cardinality
is also perfectly known. We think that it is more convenient to qualify such a cardinality number as
being “gradual” rather than being “fuzzy”. As shown in the following, this specificity has important
consequences regarding the validity of group properties (in a mathematical meaning) which hold in this
particular context.

Using definition (4) the cardinality of a crisp sBtis an increasing set of integef®, 1, ..., n}. Such
a set represents a cardinality and is also mathematically equivalent to the imtéiges approach is
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conformed to the classical mathematical definition callinthe cardinality of a crisp finite séf when
there exists a bijection betwedhand an increasing set of integés. . ., n}.

The cardinality of amx-cut of a fuzzy setE is the corresponding-cut of its fuzzy cardinality
{0,1,...,n} assimilated to the integer. Thus, a fuzzy cardinality, such 4%/0, 1/1, 0.4/2, 0.4/3},
can be viewed as a fuzzy integer, and from now on, the set of all fuzzy cardinalities (defined as FG-
Counts) will be called\; (the set offuzzynatural integers). It is important to notice that eaetut of
a fuzzy integer, as considered here, is viewed as an integer. On the contramsyitaof a “usual fuzzy
number”, interpreted as an ill-known number, represents various possible valuesligjenativeset of
numbers) of an actual number and is defined by an interval.

Other fuzzy cardinalities based on the definition of FGCounts, such as FLCounts or FECounts, have
been defined by Zadeh or Wygralgl0,29,32]. Dubois, Prade [5] introduced a similar definition but they
adopt a possibilistic point of view and a fuzzy cardinality is interpreted as a possibility distribution over
a-cuts. The rest of this paper is based on the well known FGCounts because they completely satisfy the
needs of our application domain.

In order to extend a binary operation # (etg.x, min, max, ...) 1 onN¢, we start from the operations
on crisp bags based on arithmetic operations on integers. Then, due to the semantics associated with the
degree of any integes in a fuzzy cardinality (the extent to which a fuzzy set aaseastw elements),
these operations are extended to fuzzy integers by means of the generalized extension principle [29]
defined by

Happ(2) = sup  min(u, (x), u,(¥)), (5)
(e, y)|x#y >z

wherea andb are two fuzzy natural integers.
Usinga-cuts, a binary operation # ok can be defined thanks to the corresponding operatidd:on

(a##h), = a,#b,. (6)
Example 2.1. We consider two fuzzy integers = {1/0,1/1,1/2,0.1/3} andb = {1/0,1/1, 0.5/2}.
Usinge-cuts, the minimum, addition and product operations can be easily performed. Hence, we obtain

min(a, b) = {1/0, 1/1, 0.5/2},

a+b=1{1/0,1/1,1/2,1/3,0.5/4,0.1/5},

a x b=1{1/0,1/1,1/2,0.5/3,0.5/4,0.1/5,0.1/6}.

Due to the specific characterization of fuzzy integers (their characteristic function is monotonically
decreasing ofD, +o0[), it can easily be shown (usingcuts) that\; is a semiring structure which means
that operations of addition and product satisfied the following propertigs:) is a commutative monoid
(+ is closed and associative) with the neutral elengrd}; (Nf, x) is a monoid with the neutral element
{1/0, 1/1}; the product is distributive over the addition.

LIn the rest of this paper we adopt an overloading principle and a binary operation @p or Qs is represented by the same
symbol, such ag- for the addition.
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2.3. Fuzzy bags operations basedion

The concepts of degree and number of occurrences, which both characterize aneleaé&mzy bag,
can be simultaneously dealt through the concept of fuzzy integer. Considering this notion, the occurrences
of an elemenk in a fuzzy bagA can be characterized as a fuzzy integer denoted A1y ). This fuzzy
number is the fuzzy cardinality of the fuzzy set of the different occurrencesrofi. Thus, a fuzzy bag
A, on a universd/, can be defined by a characteristic functiefnfrom U to Ns:

.QAZU—>Nf.

Example 2.2. The characteristic of the element in the fuzzy bagA = {(1,0.1,0.1)/a, (0.5)/b}
isQ4(a) = {1/0,1/1,0.1/2,0.1/3}. Using fuzzy integersA can alternatively be representedAas=
{{1/0,1/1,0.1/2,0.1/3}*a, {1/0, 0.5/1}*b}.

So, thex-cut of a fuzzy bagd can be defined as the crisp bag such that the number of occurrences
of the element in A, is an integer associated with theut of the fuzzy number of occurrencesxoin
At wAy(x) = (Qa(X))s-

From the basic operations on fuzzy integers, operations on crisp bags can be straightforwardly extended
to fuzzy bag$23,27]. Thus, the cardinality of a fuzzy bagdrawn fromU, denoted byA|, is defined by

Al =" Qax) (7

xeU

and the extension of the operations over bags leads to

Qang(x) = MiN(Q4(x), 2p(x)), (8)
Qaup(x) = max(Qa(x), p(x)), 9)
Qa+p(x) = Qa(x) + Qp(x), (10)
Qaxp(x) = Qa(x) x Qp(x), (11)

where binary operations (mimax +, x) on fuzzy integers are defined by (%),+ B is the additive
union andA x B is the cartesian product over two fuzzy bagandB. Note that, due the particular shape
of fuzzy integers, min or max can be performed “vertically” (by combining degrees) or horizontally (by
combining integers).

In the special case where and B are reduced to bags (resp. fuzzy sets), the fuzzy numbeis)
andQp(x) can be written a$0/1, 1/1,1/2, ..., 1/n} (resp.{1/0, «/1}), formulas {7)—(11) yield to the
usual specification of the corresponding operations over bafs(oesp. fuzzy sets of), 1]). Hence Nt
provides a general framework in which sets, bags, fuzzy sets and fuzzy bags can be represented througt
a common representation. Consequently, these structures can be composed thanks to a small number ¢
generic operators.

Example 2.3. Let A andB be the two fuzzy bags represented as follades{{1/0, 1/1, 0.1/2, 0.1/3}*a,
{1/0,0.5/1}*b}; B = {{1/0, 0.9/1, 0.5/2}*a}.
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The number of occurrences of the elemengdb in A N B are characterized by
Qung(a) = min({1/0, 1/1,0.1/2,0.1/3}, {1/0, 0.9/1, 0.5/2}) = {1/0, 0.9/1, 0.1/2},
Qanp(b) = min({1/0, 0.5/1}, {1/0}) = {1/0} = 0.
So, we deduceA N B = {{1/0,0.9/1, 0.1/2}*a} which is the same result as the one obtained using

o-Ccuts.

The additive union betweesi and B leads to put together the elementsiodnd B and it produces the
following fuzzy bag{(1, 0.9, 0.5, 0.1, 0.1) /a, (0.5)b} which can also be represented with fuzzy numbers
of occurrences by{1/0, 1/1,0.9/2,0.5/3,0.1/4,0.1/5}/a, {1/0, 0.5/1}/b}. This can be evaluated by
adding the number of occurrences of a (régpn A and the number of occurrences of a (rdggn B:

Qasp(a) = Qu(a) + Q5(a) = {1/0,1/1,0.1/2,0.1/3} + {1/0, 0.9/1, 0.5/2}
—{1/0,1/1,0.9/2, 0.5/3, 0.1/4, 0.1/5}.
Qasp(b) = Qu(b) + Qp(b) = {1/0,0.5/1} + {1/0} = {1/0, 0.5/1}.

A fuzzy bagA is said to be a subbag of a fuzzy bBdf and only if there are at leasi occurrences of
x in A then there are at leastoccurrences of in B, for anyx € X andw € NT. Formally, we have

ACB iff VxeX, VoeN", pug @ <ug,q (. (12)

This yields to define a gradual inclusion in order to evaluate the extent to which a fuzayibagubbag
of a fuzzy bagB. When the standard conjunction and Godel implication are chosen, we get

ne(A, B) =min, (giwrl (o, (1) (@) = Hop ) (@),

with : (p = q) = 1whenp<gq,
= ¢ otherwise (13)

Example 2.4. LetA andB betwo fuzzybagsA = {{1/0,1/1,0.9/2,0.4/3}*a}; B = {{1/0,1/1,0.8/2,
0.5/3}*a}. The extent to which is included intoB is evaluated by

Hacp = min(l =gs1,1=c5 1, 0.9=¢g50.8,04 =535 05 =min(1,1,0.8, 1) = 0.8.

Due to the Godel implication semantics, the degree 0.8 is the threstwith thatd, < B, Vo €]0, 7].

Independently Miyamot¢21] proposed a characterization of fuzzy bags which is quite similar to
our approach. Miyamoto propositions are also based on the property of distributivitguds which
allows crisp bags to be considered as a special case of fuzzy bags (such a property is not always satisfiec
[27] by the original Yager's model [30]). In [21] an elementof a fuzzy bagA, is characterized by
a decreasing sequence of membership degrees of the different occurrencas 4f Thus, if x has
p occurrences il thenx is characterized by the sequence of degre@}(x(), ,ui(x), cee, uﬁ(x))
with /,c}\(x)>uf\(x)> 2;& (x). An operation (for example) between two fuzzy bagd and B



8 D. Rocacher, P. Bosc / Fuzzy Sets and Systen@iui) mi--in

is defined by combining degrees of the same rgfk, ,(x) = 1 (x) A pp(x)). It is clear that a
membership sequenqe}{((x), ui x), ..., uﬁ (x)) can be viewed as a representation of a fuzzy number of
occurrence®u (x) = {p (x)/1, 13 (x)/2, ..., i (x)/p} and tha4np (x) = Min(Q4 (x), Q5 (x)) leads

to combination&QﬂB(x) = ug x)A u-l’g (x)) because the characteristic functions of fuzzy integars:)
andQp(x) are decreasing. However, it seems very important to us to put forward the concept of fuzzy
integer (not only sequences of degrees) which both generalizes the notions of integer and degree with their
associated operators. Thus, operations over collections (sets, fuzzy sets, bags or fuzzy bags) are treate
in a similar way (because they can be defined through a common mechanism: fuzzy cardinalities) and,
consequently, the algebra over these structures is still reduced to a small number of operators. Moreover,
the emergence of the concept of fuzzy integer can be enlarged to other structures guch @g (it

is our objective in this paper) which provide foundations for dealing with problems about absolute or
relative quantifications. Finally, if21], Miyamoto defines the cardinality of fuzzy bagon a universe

U, by cv 2, 1ty (x). This definition is derived from & Count approach which can be viewed as an
approximation of a fuzzy cardinality. In our approach, the cardinality &f naturally defined by tuzzy
cardinality: [A| = ).y Qa(x) providing anexact(but gradual) representation of the cardinality @

From this cardinality it is then possible to evaluateagproximationon R thanks to a Lebesgue integral
(similarly to the method used in Sections 4.3.A and 5.3 in this paper).

3. Fuzzy relative integers

In Section 2 we have shown thaty, +) is a monoid, in this section, we exteRd to Z; in order to
build up a group structure.
Let us consider the equivalence relatiBrsuch that

VO xT) eNpx N, YO,y e NNy, 5 xDRGT, y7)
x4y =x" 4 y", (14)
where+ is the addition oriN;. The set of fuzzy relative integers is defined by
Zs = (Nf x Np)/R, (15)
which is the quotient set of all equivalence classeshgnx N¢) defined byR.
Example 3.1. Let ¢ andb be two fuzzy naturals integers: = {1/0,1/1,0.8/2,0.5/3,0.2/4}; b =

{1/0,1/1, 0.3/2}. Then the following paika, b) is one instance of an equivalence class which defines a
fuzzy relative integer:

(a, b) = ({1/0,1/1,0.8/2,0.5/3,0.2/4}, {1/0, 1/1, 0.3/2}).
Other instances of this class could be
(@, b) = ({1/0,0.8/1,0.5/2,0.2/3}, {1/0, 0.3/2}),
@",b") = ({1/0, 1/1,0.9/2, 0.8/3, 0.5/3, 0.2/4}, {1/0, 1/1, 0.9/2, 0.3/3}).
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Fig. 2. A graphical representation of a fuzzy relative integeb) and its compact representatian »)°.

Eacha-cut of a fuzzy relative integetx™, x ) is a pair of positive integerscf, x,’) which can be
interpreted as a relative integer;( — x,). Consequently, any fuzzy relative integethas a unique
canonical representatiwé which can be obtained by enumerating the values of its differenits onz:

0= 0/ — X)), (16)

whereg;’s correspond to the differenatcuts ofx.

Example 3.2. The compact denotation of the fuzzy relative b) (cf. Example3.1) is(a, b)¢ = {1/0,
0.8/1,0.5/2,0.3/1, 0.2/2}°¢ which is graphically represented in Fig. 2.

Let (x, y) € Zs x Z5, the addition 4) and the productxX) on Z; are defined by
x+y=0T )+ 0Ty =0T+ a7, (17)
xxy=@ ) x Ty =P xyH+ 0T xy), 6t xy)+ 07 xyh). (18)

As the arithmetic operations d¥x can be defined in terms of operations on theguts, an operation
# (+ or x) on Z; is also compatible witl-cuts and the following property holds:

(X#y)a = xot#you (19)

where the operation # (in the right part of this expression) is an operati@n on

The addition is commutative, associative and has a neutral element, denotgd bgfihed by the
class{(a, a)/a € Nt}.

Each fuzzy relative integer = (x*, x~) has an opposite, denoted byx = (x—, x™), such that
x+(—x) = (xT+x7,x~ +x") which is exactly @, (+ is commutative). This property is remarkable in
comparison with the framework of usual fuzzy numbers where ‘approximately 1’ minus ‘approximately
1'returns a value corresponding to ‘approximately 0’ which is not exactly 0. Consequently, the difference
operation or¥; is given by

x—y=x+(=y) =" +y,x"+y"). (20)

So, inZs, the difference between two numbers is always defined and can be represented by a unique
canonical representatiy25s].
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It can be easily checked that this product is commutative, associative and distributive over the addition.
The neutral element, denoted by, lis the fuzzy relative integer{1/0, 1/1}, {1/0}). Therefore we
conclude that4s, +, x) forms a ring.

In bag theory, the difference between two bagsndB is defined as the relative complementtof B
with respect toA. Unfortunately, onN¢, the difference operation between two bagsnd B cannot
always be computed because an elemenf A — B is not always characterized by a positive fuzzy
integer. Thus, in the continuity of propositions of Blizg2jland Chakrabarty [6,7], where the concept of
shadow bag is defined as a generalization of the concept of bag, in [25] we have shodrpiteatides
a sound framework in which the generalization of fuzzy bags is well-founded and where the difference
of two fuzzy bags can always be defined.

4. Fuzzy rational numbers

On Z;, only the elements of classég 0) and (0, 1) have a multiplicative reciprocal. We now extend
75 10 Qs in order to achieve field properties and to create a commutative ring in which every nonzero
element is invertible.

4.1. Definition ofQ¢

Let Z;* be the set of fuzzy relative integers such thvatie 7{*, Vo €]0, 1], z, # 0. Mathematically,
we may define a fuzzy rational number as a pair of fuzzy relative intdgérs?] € 7 x Z¢* and an
equivalence relatio®’ upon such pairs specified by the rule:

vix", x?) and (", yh e z¢ x 77, X" xR/, v i x" xy?=y" xx? (21)
The set of fuzzy rational numbers is then
Qf = (Zs x Z{*)/ R/, (22)

it is the quotient set of all equivalence classesonx Z;*) defined byRr'.

An instance of a fuzzy rational number denoted[b¥, x¢] can also be rewritten with fuzzy natural
integers{(x"*, x"7), (x4t x47)].

Thea-cut of a fuzzy rational number is defined by

Vo €]0, 1),  x, = [x", x9] = [T, x"7), (x94T, x97)). (23)

Because of the distributivity of the-cut function over the addition and the multiplication @y if
x andy are two fuzzy rational numbers, theircuts are compatible with the equivalence relatidh
and then

", xR Y", y¥] iff Vael0,1], x" xyd=x?xy", Voael01]. (24)

The representation of a fuzzy relational numbewith a couple of fuzzy natural integers is not
very tractable. So, let us now introduce a more convenient notation. We use a more simple compact
representation (denoted hy) by enumerating values associated with the differentits which are
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rationals. With such a representation a fuzzy relational number can be defined by
x¢ = Z /(I — X)) = ()cgf+ — xf_). (25)

If all ratios (x"+ — x"~) + (x4* — x97) are reduced, then we get a canonical compact form of

o

Example 4.1. Let us consider the two fuzzy positive relative integers:
(x"*,x"7) = ({1/0, 1/1, 0.8/2, 0.5/3, 0.2/4}, 0); (xT, x47) = ({1/0, 1/1, 0.3/2}, 0).

The pair[(x", x"7), (x4t, x47)] represents a fuzzy rational numbemwhich belongs tads. Such a
number can be written in many other forms, for example

(", y"), 04T, y¥7)1=1[({1/0, 1/1,0.8/2,0.5/3,0.2/4,0.2/5, 0.2/6}, 0),
({1/0, 1/1, 0.3/2, 0.2/3}, 0)].
As a matter of facty is equivalent toy by R’ because
X" x ydt = x4t % y"t = {1/0, 1/1, 0.8/2, 0.5/3, 0.3/4, 0.3/5, 0.3/6, 0.2/7, 0.2/8, 0.2/9,
0.2/10,0.2/11, 0.2/12}.
For all «-cuts in{1, 0.8, 0.5, 0.3, 0.2}, we get((x"* x y¢*t),0) = ((x¢*+ x y'*), 0). This means that

X1 = xd+ = ynt - yd+ These ratios are respectively=11, 2~ 1, 3+ 1, 3+ 2 and 4= 2. Thus,x and
y have the same canonical compact representation defined by

{1/1,0.8/2,0.5/3,0.3/3 = 2,0.2/2}°.
4.2. Operations oy

The addition and product of two fuzzy rational numberand y, represented by pairs of relative
integers[x”, x?] and[y”", y?], are defined by the following rules:

", x4+ I, v = 10" x D) + 0" x x?), x4 x y4], (26)
[, x9] x [y", y¥) = [x" x y*, x? x y9]. (27)

These definitions extend the usual crisp definitions and are compatible with the coneepitsf The
addition is commutative, associative and has an additive idgltity 17, ], denoted by @, such that

[x", x¥1 + [0z, 17,1 = [(x" x 17;) + Oz, x x¥), x? x 17,1 = [x", x/].

The product is commutative, associative and has an neutral elg¢fentz, ], denoted by &, corre-
sponding to the clas$fa, al/a € Z;*}:

X", x%] x [a,a] = [x" x a, x? x a] = [x", x4].

For each element = [x", x?] belonging toD}* = (Z}* x Z{*))/R’ (which means thatx € O}, Vx €
10, 1], x, # 0), there exists an inverset = [x¢, x"], such thatr x x~1 = 1¢,:

-1

xxx = [x" x x?

x4 x x" = [1z,, 171 =1g, (x is commutative.
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Table 1

Division anda-cuts

o Dividend, Divisor, (Dividend -+ Divisor),
1 1 1 1

0.8 2 1 2

0.5 3 1 3

0.3 3 2 32

0.2 4 2 2

Consequently we can define an exact division operatiomn Qs x Qf*, such that

x+y=xxy t=[x"xy x4

x y"]. (28)
With such a definition the following property holds an:
y X (x+y)=x.

This property is remarkable because it is not always satisfied if we consider “ordinary fuzzy numbers”
representing ill-known quantities based on an extension of the interval framework.

Proof. The division between two fuzzy rational numbemndy is defined byt —y = [x” x y¢, x x y"].
So, the product x (x = y) is[y" x x x y?, y¢ x x4 x y"]. Such a result is equivalent [¢”, x¢] by
R’ becausey” x x" x y¢ x x? = y¢ x x? x y" x x" (x is commutative).

Example 4.2. Let us consider the two fuzzy relative integers:
dividend= ({1/0, 1/1,0.8/2,0.5/3,0.2/4}, 0) = {1/1,0.8/2,0.4/3,0/2/4}°,
divisor = ({1/0, 1/1, 0.3/2},0) = {1/1, 0.3/2}°.

The division (dividend-- divisor) can be evaluated bycuts. From Table 1 we deduce the compact
form of the exact division (dividend- divisor) onQs: {1/1,0.8/2,0.5/3,0.3/3 +2,0.2/2}°. Fig. 3is a
graphical representation of this result.

Note that, if dividend equals divisor the resul{is0, 1/1}.
4.3. Approximations of the exact division @n

The main interest of)s is to provide an algebraic basis allowing exact divisions and calculus compo-
sitions. From an exact result evaluated@ it is then possible to perform different approximations, for
examples om\¢ or R, depending on application domain needs. This subsection shows how such these
approximations (or summarizations) can be extracted from an exact calculation.

4.3.1. Euclidian division
OnNg, the difference between two fuzzy integerandb is not always defined, evendfis greater then
b. For example, let us consider= {1/0, 1/1, 0.8/2, 0.5/3, 0.2/4} andb = {1/0, 1/1, 0.3/2}, there is
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Fig. 3. A graphical representation of the exact division (dividendivisor).

no s such thata = » + s. This leads us to define an approximate differef2d4, noteda)-(b, as the
greatest fuzzy integersatisfyingb + s <a.

Such a definition specifies the best lower approximation of the difference between two fuzzy natural
integers. In the domain of fuzzy equations this operation)-(is called an optimistic difference [28]. We
have noticed that the difference denoted by )-( allows to specify the best lower approximatigrobn
the exact difference o#;.

In the same way, a division denoted k() similar to the optimistic division defined by Sanchez,
allows to specify the best lower approximation fgp of the exact division ort)s. This division is such
that, for two fuzzy numbers dividend and divis@r,= dividend )-( divisor is thegreatestfuzzy natural
integerg such that divisoix ¢ <dividend. This is an extension of the Euclidian division.

Such a result can be iteratively evaluated by using the differenéé @s illustrated in the following

algorithm:
R := dividend;
0 :=0;

while (divisor < R) do begin
R := R)-(divisor;
0:=0+1
endo.
At this step the value of is the greatest positive integersuch that

(divisor x g + R = dividend andnot (divisor< R).

The value ofQ is theinteger multiplicityfactor between dividend and divisor. We can go further by
evaluating duzzymultiplicity factor.

As fuzzy integers form a lattice, the propertyot (divisor< R) does not imply (divisor> R). For
example, when divisor= {1/0,1/1,1/2,0.3/3} and R = {1/0,1/1,0.8/2,0.5/3}. Let a1 be the
extent to which divisor< R (i.e.: «1 is the greatest threshold such thei €]0, «1], divisor, <R,
[23] or, in other wordsgy; is the greatest degree such th@dt/0, «1/1} x divisor< R). The difference
R := R — ({1/0,21/1} x divisor) can be performed and repeated until the predic&te<( divisor)
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becomes true. This leads to

dividend= g x divisor+ ({1/0, «1/1} x divisor) + - -- + ({1/0, o, /1} x divisor) + R
={1/0,1/1,...,1/q,01/q + 1, ..., an/q + n} x divisor+ R and(divisor > R). (29)

Consequently, the fuzzy number quotiént= {1/0, 1/1, ..., 1/q, a1/q+1, ..., o, /q+n}isthegreatest
positive fuzzy integey such as divisox ¢ <dividend.

This decomposition helps us to understand the meaning of a fuzzy multiplicity factey defined
by a fuzzy integer quotient such 850, a1/1, ..., o, /n}. In such a number a degregis the extent to
which (¢ x divisor) is smallerthan dividend.

Example 4.3. Let us consider the values of dividend and divisor defined in Exarhgte
dividend= {1/0, 1/1, 0.8/2, 0.5/3, 0.2/4}; divisor = {1/0, 1/1, 0.3/2}.

The Euclidian division using successive differences is given by comp&tirand Ro:
R1 = dividend)-(divisor = {1/0,0.8/1, 0.2/2},

as the extent to which divisor is smaller th&ais min(l = 1,1=, 08,03 =, 0.2) = 0.2, itis
possible to subtract the divisor froRy but just ‘until’ the«-cut 0.2:

R> = R1)-([{1/0, 0.2/1} x divisor] = {1/0}.
We then deduce
dividend)—(divisor = {1/0, 1/1} + {1/0, 0.2/1} = {1/0,1/1, 0.2/2}.

The product{1/0, 1/1,0.3/2} x {1/0,1/1,0.2/2} = {1/0,1/1,0.2/2,0.2/3,0.2/4} is smaller than
{1/0,1/1,0.8/2,0.5/3,0.2/4} and{1/0, 1/1, 0.2/2} is the greater fuzzy natural number satisfying such
a property. This result is a fuzzy multiplicity factor where the degree 0.2 means the extent to which 2
divisor is smaller than dividend.

The Euclidian division (dividend3( divisor) is the best approximation by lower value i§p of the
exact division (dividend: divisor) on Qs represented byl/1,0.8/2,0.5/3,0.3/3 +~ 2,0.2/2}¢ (see
Fig. 4).

4.3.2. Other approximations

In the previous paragraph, the Euclidian division has been defined as a lower approximatipn on
of the exact division (dividend- divisor) onQs. In a symmetric way, as shown in Fig. 4, an another
estimation could be given by computing the best upper valudpoof the exact division. These two
approximations provide an interval o#y which estimates the exact division.

A scalar counterpart of an exact division @p can be given by the expected vald&,14] given by a
Lebesgue integral:

n
E (dividend— divisor) = Z (dividend-- divisor),; x (o — aj4+1), (30)
i=1
where the degrees are decreasingly ordered: o1 > ap > -+- > 0,1 > o, = 0.
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Fig. 4. Different approximations of an exact division @n.

Such a measure is an approximationroaf the exact division. It gives an idea of the real shape of the
exact division.

Example 4.4. The expected value of the division (divideng()divisor) (cf. Examplet.3) onR is
(1-08)x1+(08-05x2+(05-03)x34+(03-02)x15+02x2=195

and the different approximations of the exact result can be graphically represented by Fig. 4.

5. Division operations and some applications to flexible querying

Thiswork takes place in the study of a query language which allows the formulation of imprecise queries
addressed to databases. In this framework, this section first proposes generalizations of the relational
division thanks to an Euclidian division. Next, the interest of the arithmeti@pois illustrated through
the management of a query involving an average function or the evaluation of comparison indices of
fuzzy collections.

5.1. Generalization of the relational division

The notion of division is well known in the relational model of data. For example, the query looking
for the stores having in stock all the ordered produstbased on a division which finds the stores such
that the set of their stored products contains the set of ordered products.

A first extension may be imagined by introducing some graduality in the previous query, which would
be:find the stores having among their recent stored products all the expensive ordered prathists
kind of query has been studied in the relational framevdtkising fuzzy relations.

Other data models, for example object oriented models, support complex data structures, such as bags
For example, collections of ordered products or stored products can account for numbers of occurrences
of their elements and can be modeled by bags. In this situation, a query corresponding to a division would
then befind the stores having in stock all the ordered products and the number of times each of them
can deliver this order.
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More generally, a model supporting fuzzy bags takes advantage of both graduality and number of
occurrences. For example, the stock of a store can be modeled as a fuzzy bag where each copy of &
product is associated with a degree of membership because it may have been stored in more or less
recently. In this case, the assessment of the number of times (a bag of) ordered products are contained ir
(a fuzzy bag of) recently stored products leads to define a fuzzy factor of multiplicity.

In the following, we first analyze the division on sets and fuzzy sets in the framework of the relational
model, then we show how this operator can be generalized on bags and fuzzy bags.

5.1.1. Divisions on sets and fuzzy sets

In the context of the relational model of data, a universe is modeled as a set of reRtiadsch
are subsets of the Cartesian product of some domains. The relational diviskgd oX) by S(A, Y),
denoted byR[A — A]S, whereA is a set of attributes common #® and S, aims at determining the
X-values connected iR with all the A-values appearing ifi. Formally this operation can be defined by

x € RIA=-A]S & Vs, seS[A]l= (x,s) € R. (32)
If S" = {s|s € S[A]} andx.R’ = {s|(x,s) € R} thenR[A +— A]S can also be defined by
x € R[A+AlS & S Cx.R. (32)

For example, if we know the stores which keep in stock products (rel@&)omn the one hand, and
ordered products (relatiaf), on the other hand, the query looking thie stores able to deliver all the
ordered productss a division of R by S. These stores are such that the set of the ordered products is
includedin the set of their stored products.

A generalization of the relational division, based on fuzzy relat®m@sdsS, has been proposed [4h].
The expression (31) has been extended by changing the usual implication into a multiple-valued one and
interpreting the universal quantifier as a generalized conjunction:

HR[A+A]s(X) = ir;f (us(s) = pg(x, s[A]). (33)
As the implication models an inclusion, the division can be characterized by a degree of inclusion:
HR[A+A]s(X) = Mgf(S/, x.R"). (34)

With the Godel’s inclusion (based on the Godel's implicatiq@f(S/, x.R’) is the greatest threshold
such thatva €]0, 7], S, € x.R),.

For example S can be a fuzzy relation which represents the expensive ordered producks Gam
depict stores and their products recently kept in stock. A query involving a division on these two fuzzy
relations could befind the stores having in their stock of recently stocked products all the ordered
expensive productSo, we are looking for storessuch that the fuzzy set of expensive ordered products
(8”) is includedin the fuzzy set of their recent products g’). In the result, the degree of membership
of a storex expresses the extent to whishis included inx.R’.

5.1.2. Divisions on bags and fuzzy bags

We now assume that our data model supports two collection types which model bags and fuzzy bags.
It could be, for example, an object oriented model. Thus, we consider that the previous coll§ttions
andx.R’ can be either bags or fuzzy bags. The question is: how to take advantage of their ability to
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manage quantities when we deal with a query involving a division? Following this aim, we propose some
generalizations of the relational division.

5.1.2.1. Division operators on bagsWe first consider tha’ andx.R’ are bags. For exampl§; can
represent a bag of ordered produdtsis a bag because each produe now associated with a number
of occurrences, denoted by (s), corresponding to the number of copies which have been ordered. The
bagx.R’ is a bag of products kept in stock in a starelhe number of copies of a producin this stock
is denoted byw, z/(s). We are concerned with queries such farsd the stores having enough stored
products to deliver all the ordered products

So, we are looking for every stosesatisfying the following constraint:

Vs €S, wg(s)<oyr/(s), (35)

which means that the number of occurrences of a stored produdsigreater than the quantity of the

corresponding product in the order. These stores are such that the bag of the ordered prioalude s

in the bag of their stored products. The expression corresponds to the usual inclusion between bags.
However, the model allows a richer expressiveness, it can take into account the multiplicity factor

between the number of occurrences of an ordered product and the number of copies of this product in a

storex. This multiplicity is defined by

oy g(s) divag (s), (36)

where div is the (usual) Euclidian division. This operator allows to deal with queries sutihcathe
number of times a store x can deliver all the ordered products

From that it follows a definition of the division of bags expresgimgnumber of timeg bags included
in another bag. This number is a multiplicity factor of the inclusion between two bags (denofeahd
is defined by

wc (S, x.R) = Inf (0. (5) diV 05/ (5)). (37)

This formula derives from33) where the usual implication is changed into an Euclidian division
and the universal quantifier is interpreted as a generalized conjunction, here definedrdsnilrm
on integers.

5.1.2.2. Division operators on fuzzy bagd/Ne study the most general case and we now suppose that
S’ andx.R’ are two fuzzy bags. For example, the fuzzy hag’ is a collection of more or less recent
products kept in stock by. Because each copy of a product has been stored in a more or less recent
past and is associated with a level of freshness, each product is characterized by a fuzzy number of
occurrences inc.R’ denoted byQ, r/(s). The fuzzy bags’ may be a fuzzy bag of ordered products.
Because it is possible to order different more or less fresh occurrences of a prpodach product in
S’ is associated with a fuzzy number of occurrences denoteegkly). For example, the fuzzy number
Q¢ (s) = {1/0,1/1, 0.3/2} expresses that the user orders two occurrencestbe expected freshness
of the first one must be perfect, and the quality level of the second one has to be atleast higher than (or
equal) 0.3.

Once again, we are concerned with queries suctirakthe number of times a store x can deliMeom
its stock of more or less fresh copies of produatkthe ordered copies of productsking into account
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the minimum quality level of the expected cop&s we now consider both numbers of occurrences and
degrees (relative to the freshness) which is interpreted as a threshold to be attained by a corresponding
occurrence of a stored product.

The extension of expressio84) leads to the following formula based on an (fuzzy) Euclidian division
applied on fuzzy numbers:

Qc(S', x.R)) = lgf Qe r(8))+( Qg (5)). (38)

The fuzzy numbefc (S’, x.R’) defines the fuzzy multiplicity factor between two fuzzy bags. this
greatest fuzzy numbersuch that, when multiplying all the numbers of occurrences of the elements of
S’ by n, a fuzzy bagncludedin x.R’ is obtained.

Example 5.1. If the stock of the store is characterized by the following fuzzy bagr’ = {{1/0, 1/1,
0.8/2,0.5/3,0.2/4}*s} and the user’s order is characterized¥$yy= {{1/0, 1/1, 0.3/2}*s}, the number
of times this order can be provided lyis

{1/0,1/1,0.8/2, 0.5/3, 0.2/4} )=( {1/0, 1/1,0.3/2} = {1/0, 1/1, 0.2/2}.

Such a fuzzy multiplicity factor means that the sterean deliver one time two occurrencessafith the
expected levels of quality. Two other occurrences can be delivered but, in this case, the extent to which
the user is satisfied is 0.2.

As matter of fact, if the order is delivered one time, the rest of stored products beghiaek/1, 0.8/2,
0.5/3,0.2/4})—({1/0,1/1,0.3/2} = {1/0,0.8/1, 0.2/2}. As the extent to which1/0, 1/1,0.3/2} is
includedin{1/0, 0.8/1, 0.2/2} is given by min{1 = 0.8, 0.3 = 0.2) = 0.2 (using Godelimplication),
it can be deduced that the order can be delivered once again but only with the user satisfaction 0.2.

So, theinclusion of’ in x. R’ is characterized by the fuzzy multiplicity factor tip = {1/0, 1/1, 0.2/2}
where the degree 0.2 expresses the extent to wHichincluded inx. R’ two times.

To conclude this subsection, we notice that expres&8)i¢ the most general expression of the division
between collections. R’ andS’. As a matter of fact, a degree of membership of an elemana fuzzy set
A(uy(x)) is a special case of a fuzzy number (denofédi, 1/u 4 (x)}), and a number of occurrences of
an element inacrisp bagd (w4 (x)) is a special case of a fuzzy number (denotédo, . .., 1/wa(x)}).

When (38) is applied to these specific fuzzy numbers (respectively degrees and integers) we can easily
check that the obtained results are consistent with (33) and (38).

5.2. Division and fuzzy average

In databases, we may have to evaluhteaverage of the salaries of young peopleere salaries are
precisely known. In this subsection, we illustrate that the evaluation of an average function, as proposed
by Dubois and Prade [14], can also be viewed as an evaluation of a weighted m@an on

Dubois and Prade propose to extend a set-function, such as the average function, to a flizy set
random number defined by

averager) = {averageérl,, ), m(F,))/i =1,2,...,n},
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whereg;’s are the non-zero membership degree#’idecreasingly ordered{ = 1 > a2, ... > oy >
a1 = 0) andm(Fy,) = o — oj41.
The scalar counterpart of this definition is the expected value given by

E(averager)) = Z(oc,- — 4 11) x averagerF,,). (39)
im1

Example 5.2. Let us consider the following fuzzy set of persans= {1/pl, 1/p2,0.4/p3, 0.1/ p4}.
We suppose that their salaries are respectively: 2000, 1000, 2000 and 1000 euros. The average of salarie
of people inF,, for the different a-cuts are:

o Fy, Average ;)
1  {200Q 1000 1500
0.4 {200Q 100Q 2000 1666.6

0.1 {200Q 100Q 200Q 100G 1500

The scalar evaluation of the average of the salaries of the young péaptéen:
(1—-0.4) x 1500+ (0.4 — 0.1) x 166666+ (0.1 — 0) x 1500= 155Q
The arithmetic ord; allows to evaluate an average function. Hence, the avetagfea fuzzy bagS

of valuesy; is evaluated just as an extension@pof a usual arithmetic weighted mean but considering
fuzzy numbers of occurrences. It is defined as follows:

A= (Z Qs(xi) x x,-> =) Q(x). (40)
i=1 i=1

Due to the algebraic properties @f, it is worth noticing that the following property holds:

> [Qsm) + Zfzs(xn} =1

i=1 i=1

Example 5.2(continued. The collection of salaries of the young peopleis the fuzzy bag:sS =
(1/200Q 1/100Q 0.4/200Q 0.1/1000, which can also be represented using fuzzy cardinalitie$ by
{{1/0,1/1,0.4/2}*200Q {1/0, 1/1, 0.1/2}*1000. The relative weights of the salaries 2000 et 1000 are

respectively:

wy = {1/1,0.4/2}¢ = [{1/1,0.4/2})° + {1/1,0.1/2)°] = {1/1 = 2,0.4/2 = 3,0.1/1 = 2},

wo = {1/1,0.1/2)° = [{1/1, 0.4/2)° + {1/1, 0.1/2}°] = {1/1 =+ 2,0.4/1 = 3,0.1/1 = 2}°.
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If we use an approach hycuts (cf. 4.2), we easily check thai; + wo = 1. Because a integarcan
be represented by the fuzzy numigr»}©, the average of salaries can be performed by
A= (w1 x {1/2000°) + (w2 x {1/1000°)
={1/2000~ 2, 0.4/4000- 3, 0.1/2000-= 2}° + ({1/1000- 2, 0.4/1000~= 3, 0.1/1000-+ 2}°
={1/150Q 0.4/5000-+ 3, 0.1/1500°.
This fuzzy rational numbeA corresponds to an exact representation of the average of the salaries of the

young peopleY. From this exact evaluation, it is then possible to extract different estimates. A scalar
estimate can be computed thanks to a Lebesgue integral:

E(A) = (1—-0.4) x 1500+ (0.4 — 0.1) x 166666+ (0.1 — 0) x 1500= 1550

This result is similar to the scalar value obtained via the previous approach originally proposed by Dubois
and Prade which exploits a random set view of a fuzzy set.

5.3. Divisions and similarity measures

Inclusion grades and similarity measures between two fuzzyAeisd B are very numerous in the
literature. Thus, there is a family of comparison indices based on the cardinalities of fuzzy sets, such as

. . |AN B
inclusion_indexA, B) = Al
equality _indexA, B) = AN B
quatity_ = a0
overlap_indexA, B) = AN B
- ’ |A| x |B|

The above definitions are generally based on a scalar evaluation of the cardinality of a fuzzy set
F, defined by:|F| = ) .., urp(x). Such an evaluation (calletl Couni(F)) can be viewed as an
approximation ork of the FGCountF') function defined by Zadeh. Consequently, usihGounts the
above indices are obtained by a calculus over approximations.

In Section2.2, the fuzzy cardinality FGCouff) is considered as an exact representation of the
cardinality of F and itis interpreted as a fuzzy integer belongingytoFollowing the approach developed
in this paper, the idea pushed forward in this subsection, is that, using the arithm@tigios possible to
naturally and straightforwardly perform exact evaluations of these indices. Then, in an ultimate step, from
the resulting exact evaluations, it is possible to extract different estimates. For example, scalar estimates
can be computed using a Lebesgue integral as it has been done in Section 5.2 for the average.

Example 5.3. Let A and B be fuzzy setsA={1/a, 0.6/b,0.7/c,0.7/d,0.1/¢}; B={1/a,0.6/b,0.7/c,
0.7/e}. The scalar cardinalities of N B andA are

Al =1+07+07+06+0.1=31,

[ANBlr=14+07+0.6+0.1=24.
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Based on these approximations, the usual inclusion index betwesil B is

. L 2.4
inclusion_indexA, B) = 31= 0.77.

In the framework of¢, we obtain
|Alg, = {1/1,0.7/3,0.6/4,0.1/5}°,
|AN B|g, = {1/1,0.7/2,0.6/3,0.1/4}°,
inclusion_indexA, B)g, = {1/1,0.7/2 + 3,0.6/3 + 4,0.5/4 = 5}°.

Based on this exact representation of the inclusion indexowe perform its approximation ddthanks
to a Lebesgue integral:

inclusion_indexA, B)=(1—-0.7) x 1+ (0.7 —-0.6) x 0.66+ (0.6 — 0.1) x 0.75
+(0.1-0) x 0.8=0.82

The relative cardinality of a fuzzy sdtwith respect a fuzzy se® can be interpreted as the proportion
of elements ofB that are inA. Possibilistic and probabilistic definitions of this notion are proposed
by Delgado et al[8]. These definitions are based on divisionssbguts ((A N B),| / [(B),]), similarly
to our approach. However, our interpretation of the result is specific. As explained in Section 2.2 for
the representation of fuzzy integers, we claim that possibilistic, probabilistic or representation based on
FGCount (a fuzzy rational is a couple of fuzzy natural integers) of a relative cardinality can be viewed as
three equivalent representations of aenewell-defined information corresponding to a fuzzy (gradual)
rational quantity.

Finally, in the framework of);, we notice that the previous indices can be easily generalized to compare
two fuzzy bags because the cardinality of a fuzzy bag is a fuzzy integer (7).

6. Conclusion

This paper extends previous propositions related to fuzzy bags found in the following articles [22—-25].
These works aim at defining the concept of fuzzy bag using a well-founded framework in which sets,
fuzzy sets and bags can be viewed as particular cases of fuzzy bags. All of these structures are homo-
geneous and compatible because they are defined through a common mechanism: fuzzy cardinalities.
Consequently, a small number of generic operators can be applied to these different collections. Using
this approach, a fuzzy cardinality is interpreted as a gradual number which, taken as a whole, completely
and exactly describes the cardinality of a fuzzy collection. This view of fuzzy numbers differs from the
usual one, interpreting a fuzzy number as a possibility distribution describing the ill-known values of
one variable, and has important consequences with regards to algebraic properties. Furthermore, we have
shown that such a context offers powerful tools allowing the expression of flexible queries addressed to
usual databases taking into account both preferences and quantities. However, it is worth mentioning that
the considered concepts are general and can be applied to many other domains.

In this paper, this point of view is enlarged and we evoked how the set of natural intégedsas
been extended to the set of relative integahg.(In this framework, the difference between two fuzzy
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integers is always exactly defined in terms of one equivalence class of pairs of fuzzy natural integers. It
has been shown that each equivalence class can be identified by a unique canonical representative an
can easily be manipulated usingcuts. This approach has been pursued by extengtirg Qs (the set

of fuzzy rational numbers) where each number is defined in terms of one equivalence class of pairs of
fuzzy relative integers also identified by a unique canonical representative. It is noteworthy that the set of
fuzzy integers, with both addition and product, forms a ring and the rational numbers form the algebraic
structure of a field. These new frameworks provide an arithmetic basis where difference or ratio between
fuzzy quantities can be exactly evaluated. The obtained results can then be composed and used inside
more complex calculations. Next, from an exact evaluation of an arithmetic expressignoonls, it

is possible to extract different approximations,gnor R, for example, depending on users or applica-

tions needs.

In the future, complementary studies have to be carried out so as to define fuzzy order relations. Such
comparisons between (fuzzy or crisp) quantities are essential in particular for dealing with flexible queries
using absolute or relative fuzzy quantifiers suchfeml the best five companies in which the number
of young employees is greater than the number of well-paid employdiesl the best five companies
in which most of the young employees are well-pAigreliminary study, which can be found [86],
shows that these fuzzy order relations rely on difference or division operatdads and can be viewed
as a generalization of fuzZg-implications. These investigations will be developed in future works.

Mathematicians in the past have introduced the notions of fuzzy real line [16] and subspaces of the
real line [19]. We think tha@); and the characterization of fuzzy order relations should open the door to
the construction oR; using a generalization of Dedekind cuts or Cauchy sequences.
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